dc.creator | Rueda-Bayona, Juan Gabriel | |
dc.creator | Cabello Eras, Juan José | |
dc.creator | Sagastume, Alexis | |
dc.date | 2021-08-23T13:31:27Z | |
dc.date | 2021-08-23T13:31:27Z | |
dc.date | 2021-05-18 | |
dc.date.accessioned | 2023-10-03T19:11:50Z | |
dc.date.available | 2023-10-03T19:11:50Z | |
dc.identifier | 2369-0739 | |
dc.identifier | 2369-0747 | |
dc.identifier | https://hdl.handle.net/11323/8574 | |
dc.identifier | https://doi.org/10.18280/mmep.080313 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168771 | |
dc.description | The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] British Petroleum, Statistical review of world energy, 2017. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/news-and insights/speeches/bp-statistical-review-of-world-energy2017-lamar-mckay.pdf. | |
dc.relation | [2] IPCC, Climate Change 2014: Mitigation of climate change, 3. Cambridge University Press, 2014. | |
dc.relation | [3] Sawin, K., Sverrisson, J., Seyboth, F., Adib, K., Murdock, R., Lins, H.E., Satzinger, C. (2017). Renewables 2017 Global Status Report. | |
dc.relation | [4] International Energy Agency, Renewables 2017. Analysis and forecasts to 2022., 2017.
https://www.iea.org/reports/renewables-2017. | |
dc.relation | [5] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A. (2019). Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy, 135: 529-539.
https://doi.org/10.1016/j.renene.2018.12.039 | |
dc.relation | [6] Wiser, R., Bolinger, M., Heath, G., Keyser, D., Lantz, E., Macknick, J., Millstein, D. (2016). Long-term
implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 179: 146-158. https://doi.org/10.1016/j.apenergy.2016.06.123 | |
dc.relation | [7] Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. (2011). Environmental impact of wind energy.
Renewable and Sustainable Energy Reviews, 15(5): 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024. | |
dc.relation | [8] Global Wind Energy Council, Global wind energy outlook 2016, 2016. https://gwec.net/global-windenergy-outlook-2016/. | |
dc.relation | [9] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543.
https://doi.org/10.1016/j.jclepro.2019.02.174 | |
dc.relation | [10] Perez-Arriaga, I.J. (2011). Managing large scale penetration of intermittent renewables. In MITEI
Symposium on Managing Large-Scale Penetration of Intermittent Renewables, Cambridge/USA, 20(4): 2011. | |
dc.relation | [11] Jiang, P., Li, C. (2018). Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting. Measurement, 124: 395-412.
https://doi.org/10.1016/j.measurement.2018.04.014 | |
dc.relation | [12] Sweeney, C., Bessa, R.J., Browell, J., Pinson, P. (2020). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2): e365. https://doi.org/10.1002/wene.365 | |
dc.relation | [13] Skittides, C., Früh, W.G. (2014). Wind forecasting using principal component analysis. Renewable Energy, 69: 365-374. https://doi.org/10.1016/j.renene.2014.03.068 | |
dc.relation | [14] Kavasseri, R.G., Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models.
Renewable Energy, 34(5): 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006 | |
dc.relation | [15] Wang, J., Song, Y., Liu, F., Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60: 960-981. https://doi.org/10.1016/j.rser.2016.01.114 | |
dc.relation | [16] Jaramillo, O.A., Borja, M.A. (2004). Wind speed analysis in La Ventosa, Mexico: A bimodal probability
distribution case. Renewable Energy, 29(10): 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001 | |
dc.relation | [17] Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011). Wind farm electrical power production model for load flow analysis. Renewable Energy, 36(3): 1008-1013.
https://doi.org/10.1016/j.renene.2010.09.007 | |
dc.relation | [18] Wang, X., Guo, P., Huang, X. (2011). A review of wind power forecasting models. Energy procedia, 12: 770-778. https://doi.org/10.1016/j.egypro.2011.10.103 | |
dc.relation | [19] Zhang, Y., Wang, J., Wang, X. (2014). Review on probabilistic forecasting of wind power generation.
Renewable and Sustainable Energy Reviews, 32: 255-270. https://doi.org/10.1016/j.rser.2014.01.033 | |
dc.relation | [20] Chang, W.Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy
Engineering, 2(04): 161. https://doi.org/10.4236/jpee.2014.24023 | |
dc.relation | [21] Guo, W., Wu, G., Liang, B., Xu, T., Chen, X., Yang, Z., Jiang, M. (2016). The influence of surface wave on water exchange in the Bohai Sea. Continental Shelf Research, 118: 128-142. https://doi.org/10.1016/j.csr.2016.02.019 | |
dc.relation | [22] Fertig, E. (2019). Simulating subhourly variability of wind power output. Wind Energy, 22(10): 1275-1287. https://doi.org/10.1002/we.2354 | |
dc.relation | [23] Duran, M.J., Cros, D., Riquelme, J. (2007). Short-term wind power forecast based on ARX models. Journal of Energy Engineering, 133(3): 172-180. https://doi.org/10.1061/(ASCE)0733-
9402(2007)133:3(172) | |
dc.relation | [24] Rueda-bayona, J.G., Cabello, J., Schneider, I. (2018). Wind-speed modelling using fourier analysis and nonlinear autoregressive neural network (NAR). In: F. Giannetti, B.F.; Almeida, C.M.V.B.; Agostinho (Ed.), Adv. Clean. Prod. Proc. 7th Int. Work., Barranquilla, pp. 1-198.
http://www.advancesincleanerproduction.net/7th/files/se
ssoes/6A/8/rueda-bayona_et_al_abstract.pdf (accessed
April 8, 2020). | |
dc.relation | [25] Eras, J.J.C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy. 9: 15-25. https://doi.org/10.32479/ijeep.7108 | |
dc.relation | [26] NOAA, NCEP North American Regional Reanalysis: NARR, (2016).
http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html, accessed on Jan. 5, 2016. | |
dc.relation | [27] Soman, S.S., Zareipour, H., Malik, O., Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium 2010: 1-8.
https://doi.org/10.1109/NAPS.2010.5619586 | |
dc.relation | [28] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6): 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015 | |
dc.relation | [29] Liu, H., Duan, Z., Wu, H., Li, Y., Dong, S. (2019). Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement, 148: 106971.
https://doi.org/10.1016/j.measurement.2019.106971 | |
dc.relation | [30] Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188: 56-70.
https://doi.org/10.1016/j.apenergy.2016.11.111 | |
dc.relation | [31] Carvalho, D., Rocha, A., Santos, C.S., Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques. Applied Energy, 108: 493-504.
https://doi.org/10.1016/j.apenergy.2013.03.074 | |
dc.relation | [32] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479-489. https://doi.org/10.1016/j.rser.2013.10.016 | |
dc.relation | [33] Han, Q., Ma, S., Wang, T., Chu, F. (2019). Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renewable and Sustainable Energy Reviews, 115: 109387. https://doi.org/10.1016/j.rser.2019.109387 | |
dc.relation | [34] Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54:
777-784. https://doi.org/10.1016/j.rser.2015.10.071 | |
dc.relation | [35] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162: 808-826. https://doi.org/10.1016/j.apenergy.2015.10.145 | |
dc.relation | [36] Dhiman, H.S., Deb, D., Guerrero, J.M. (2019). Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 108: 369-379.
https://doi.org/10.1016/j.rser.2019.04.002 | |
dc.relation | [37] Dong, Q., Sun, Y., Li, P. (2017). A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renewable Energy, 102: 241-257.
https://doi.org/10.1016/j.renene.2016.10.030 | |
dc.relation | [38] Ziel, F., Croonenbroeck, C., Ambach, D. (2016). Forecasting wind power–modeling periodic and nonlinear effects under conditional heteroscedasticity. Applied Energy, 177: 285-297.
https://doi.org/10.1016/j.apenergy.2016.05.111 | |
dc.relation | [39] Meng, A., Ge, J., Yin, H., Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114: 75-88.
https://doi.org/10.1016/j.enconman.2016.02.013 | |
dc.relation | [40] Zjavka, L. (2015). Wind speed forecast correction models using polynomial neural networks. Renewable Energy, 83: 998-1006.
https://doi.org/10.1016/j.renene.2015.04.054 | |
dc.relation | [41] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. (2016). Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 85: 790-809.
https://doi.org/10.1016/j.renene.2015.07.004 | |
dc.relation | [42] Doucoure, B., Agbossou, K., Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92: 202-211. https://doi.org/10.1016/j.renene.2016.02.003 | |
dc.relation | [43] Zendehboudi, A., Baseer, M.A., Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review.
Journal of Cleaner Production, 199: 272-285.
https://doi.org/10.1016/j.jclepro.2018.07.164 | |
dc.relation | [44] Barbounis, T.G., Theocharis, J.B. (2006). Locally rec urrent neural networks for long-term wind speed and power prediction. Neurocomputing, 69(4-6): 466-496.
https://doi.org/10.1016/j.neucom.2005.02.003 | |
dc.relation | [45] Amjady, N., Keynia, F., Zareipour, H. (2011). Short-term wind power forecasting using ridgelet neural network. Electric Power Systems Research, 81(12): 2099-2107.
https://doi.org/10.1016/j.epsr.2011.08.007 | |
dc.relation | [46] Blonbou, R. (2011). Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renewable Energy, 36(3): 1118-1124. https://doi.org/10.1016/j.renene.2010.08.026 | |
dc.relation | [47] Azad, H.B., Mekhilef, S., Ganapathy, V.G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2): 546-553.
https://doi.org/10.1109/TSTE.2014.2300150 | |
dc.relation | [48] Xiao, L., Wang, J., Dong, Y., Wu, J. (2015). Combined forecasting models for wind energy forecasting: A case study in China. Renewable and Sustainable Energy Reviews, 44: 271-288.
https://doi.org/10.1016/j.rser.2014.12.012 | |
dc.relation | [49] Wang, J., Hu, J., Ma, K., Zhang, Y. (2015). A selfadaptive hybrid approach for wind speed forecasting. Renewable Energy, 78: 374-385.
https://doi.org/10.1016/j.renene.2014.12.074 | |
dc.relation | [50] Carpinone, A., Giorgio, M., Langella, R., Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric Power Systems Research,
122: 152-158. https://doi.org/10.1016/j.epsr.2014.12.025 | |
dc.relation | [51] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F. (2015). Wind speed forecasting approach using secondary
decomposition algorithm and Elman neural networks.
Applied Energy, 157: 183-194.
https://doi.org/10.1016/j.apenergy.2015.08.014 | |
dc.relation | [52] Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016). A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87: 903-910. https://doi.org/10.1016/j.renene.2015.08.038 | |
dc.relation | [53] Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J. (2016). A novel bidirectional mechanism based on time series model for wind power forecasting. Applied Energy, 177: 793-803.
https://doi.org/10.1016/j.apenergy.2016.03.096 | |
dc.relation | [54] Zhao, W., Wei, Y.M., Su, Z. (2016). One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 178: 886-901. https://doi.org/10.1016/j.apenergy.2016.06.098 | |
dc.relation | [55] Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T., Zhang, K. (2016). Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renewable Energy, 96: 727-737.
https://doi.org/10.1016/j.renene.2016.05.023 | |
dc.relation | [56] Wang, S., Zhang, N., Wu, L., Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94: 629-636. https://doi.org/10.1016/j.renene.2016.03.103 | |
dc.relation | [57] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112: 115-124. https://doi.org/10.1016/j.enconman.2016.01.007 | |
dc.relation | [58] Jiang, P., Li, P. (2017). Research and application of a new hybrid wind speed forecasting model on BSO algorithm. Journal of Energy Engineering, 143(1): 04016019. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000362 | |
dc.relation | [59] Beale, M., Hagan, M., Demuth, H. (2020). Deep Learning Toolbox™ Getting Started Guide. The
MathWorks. Inc.: Natick, MA, USA. | |
dc.relation | [60] Rockmore, D.N. (2000). The FFT: An algorithm the whole family can use. Computing in Science &
Engineering, 2(1): 60-64. https://doi.org/10.1109/5992.814659 | |
dc.relation | [61] Chu, E., George, A. (1999). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press. | |
dc.relation | [62] Rueda Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04 | |
dc.relation | [63] Brigham, E. (1988). Fast Fourier Transform and Its
Applications. | |
dc.relation | [64] Zonst, A. (2000). Understanding the FFT, 2nd ed., 2000. | |
dc.relation | [65] Hewitt, E., Hewitt, R. (1979). Archive for History of
Exact Sciences: An Episode in Fourier Analysis. | |
dc.relation | [66] Rasmussen, H.O. (1993). The wavelet Gibbs phenomenon. Wavelets, Fractals, and Fourier
Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.), 123-142. | |
dc.relation | [67] Kelly, S. (1995). Gibbs Phenomenon for Wavelets: Applied and Computational Harmonic Analysis, 1st ed., 1995. | |
dc.relation | [68] Chan, R.W., Yuen, J.K., Lee, E.W., Arashpour, M. (2015). Application of Nonlinear-AutoregressiveExogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85: 1- 10. https://doi.org/10.1016/j.engstruct.2014.12.007 | |
dc.relation | [69] Widrow, B., Hoff, M.E. (1989). Adaptive switching circuits, in: Wescon Conf. Rec., 1989. | |
dc.relation | [70] NOAA, NCEP North American Regional Reanalysis: NARR, (2016). | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Mathematical Modelling of Engineering Problems | |
dc.source | https://www.iieta.org/journals/mmep/paper/10.18280/mmep.080313 | |
dc.subject | Fourier analysis | |
dc.subject | Nonlinear autoregressive network | |
dc.subject | Wind potential | |
dc.subject | Reanalysis | |
dc.subject | Wind-speed | |
dc.title | Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |