dc.creatorRueda-Bayona, Juan Gabriel
dc.creatorCabello Eras, Juan José
dc.creatorSagastume, Alexis
dc.date2021-08-23T13:31:27Z
dc.date2021-08-23T13:31:27Z
dc.date2021-05-18
dc.date.accessioned2023-10-03T19:11:50Z
dc.date.available2023-10-03T19:11:50Z
dc.identifier2369-0739
dc.identifier2369-0747
dc.identifierhttps://hdl.handle.net/11323/8574
dc.identifierhttps://doi.org/10.18280/mmep.080313
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168771
dc.descriptionThe limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] British Petroleum, Statistical review of world energy, 2017. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/news-and insights/speeches/bp-statistical-review-of-world-energy2017-lamar-mckay.pdf.
dc.relation[2] IPCC, Climate Change 2014: Mitigation of climate change, 3. Cambridge University Press, 2014.
dc.relation[3] Sawin, K., Sverrisson, J., Seyboth, F., Adib, K., Murdock, R., Lins, H.E., Satzinger, C. (2017). Renewables 2017 Global Status Report.
dc.relation[4] International Energy Agency, Renewables 2017. Analysis and forecasts to 2022., 2017. https://www.iea.org/reports/renewables-2017.
dc.relation[5] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A. (2019). Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy, 135: 529-539. https://doi.org/10.1016/j.renene.2018.12.039
dc.relation[6] Wiser, R., Bolinger, M., Heath, G., Keyser, D., Lantz, E., Macknick, J., Millstein, D. (2016). Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 179: 146-158. https://doi.org/10.1016/j.apenergy.2016.06.123
dc.relation[7] Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5): 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024.
dc.relation[8] Global Wind Energy Council, Global wind energy outlook 2016, 2016. https://gwec.net/global-windenergy-outlook-2016/.
dc.relation[9] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174
dc.relation[10] Perez-Arriaga, I.J. (2011). Managing large scale penetration of intermittent renewables. In MITEI Symposium on Managing Large-Scale Penetration of Intermittent Renewables, Cambridge/USA, 20(4): 2011.
dc.relation[11] Jiang, P., Li, C. (2018). Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting. Measurement, 124: 395-412. https://doi.org/10.1016/j.measurement.2018.04.014
dc.relation[12] Sweeney, C., Bessa, R.J., Browell, J., Pinson, P. (2020). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2): e365. https://doi.org/10.1002/wene.365
dc.relation[13] Skittides, C., Früh, W.G. (2014). Wind forecasting using principal component analysis. Renewable Energy, 69: 365-374. https://doi.org/10.1016/j.renene.2014.03.068
dc.relation[14] Kavasseri, R.G., Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34(5): 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006
dc.relation[15] Wang, J., Song, Y., Liu, F., Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60: 960-981. https://doi.org/10.1016/j.rser.2016.01.114
dc.relation[16] Jaramillo, O.A., Borja, M.A. (2004). Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29(10): 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001
dc.relation[17] Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011). Wind farm electrical power production model for load flow analysis. Renewable Energy, 36(3): 1008-1013. https://doi.org/10.1016/j.renene.2010.09.007
dc.relation[18] Wang, X., Guo, P., Huang, X. (2011). A review of wind power forecasting models. Energy procedia, 12: 770-778. https://doi.org/10.1016/j.egypro.2011.10.103
dc.relation[19] Zhang, Y., Wang, J., Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32: 255-270. https://doi.org/10.1016/j.rser.2014.01.033
dc.relation[20] Chang, W.Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2(04): 161. https://doi.org/10.4236/jpee.2014.24023
dc.relation[21] Guo, W., Wu, G., Liang, B., Xu, T., Chen, X., Yang, Z., Jiang, M. (2016). The influence of surface wave on water exchange in the Bohai Sea. Continental Shelf Research, 118: 128-142. https://doi.org/10.1016/j.csr.2016.02.019
dc.relation[22] Fertig, E. (2019). Simulating subhourly variability of wind power output. Wind Energy, 22(10): 1275-1287. https://doi.org/10.1002/we.2354
dc.relation[23] Duran, M.J., Cros, D., Riquelme, J. (2007). Short-term wind power forecast based on ARX models. Journal of Energy Engineering, 133(3): 172-180. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:3(172)
dc.relation[24] Rueda-bayona, J.G., Cabello, J., Schneider, I. (2018). Wind-speed modelling using fourier analysis and nonlinear autoregressive neural network (NAR). In: F. Giannetti, B.F.; Almeida, C.M.V.B.; Agostinho (Ed.), Adv. Clean. Prod. Proc. 7th Int. Work., Barranquilla, pp. 1-198. http://www.advancesincleanerproduction.net/7th/files/se ssoes/6A/8/rueda-bayona_et_al_abstract.pdf (accessed April 8, 2020).
dc.relation[25] Eras, J.J.C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy. 9: 15-25. https://doi.org/10.32479/ijeep.7108
dc.relation[26] NOAA, NCEP North American Regional Reanalysis: NARR, (2016). http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html, accessed on Jan. 5, 2016.
dc.relation[27] Soman, S.S., Zareipour, H., Malik, O., Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium 2010: 1-8. https://doi.org/10.1109/NAPS.2010.5619586
dc.relation[28] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6): 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015
dc.relation[29] Liu, H., Duan, Z., Wu, H., Li, Y., Dong, S. (2019). Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement, 148: 106971. https://doi.org/10.1016/j.measurement.2019.106971
dc.relation[30] Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188: 56-70. https://doi.org/10.1016/j.apenergy.2016.11.111
dc.relation[31] Carvalho, D., Rocha, A., Santos, C.S., Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques. Applied Energy, 108: 493-504. https://doi.org/10.1016/j.apenergy.2013.03.074
dc.relation[32] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479-489. https://doi.org/10.1016/j.rser.2013.10.016
dc.relation[33] Han, Q., Ma, S., Wang, T., Chu, F. (2019). Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renewable and Sustainable Energy Reviews, 115: 109387. https://doi.org/10.1016/j.rser.2019.109387
dc.relation[34] Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54: 777-784. https://doi.org/10.1016/j.rser.2015.10.071
dc.relation[35] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162: 808-826. https://doi.org/10.1016/j.apenergy.2015.10.145
dc.relation[36] Dhiman, H.S., Deb, D., Guerrero, J.M. (2019). Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 108: 369-379. https://doi.org/10.1016/j.rser.2019.04.002
dc.relation[37] Dong, Q., Sun, Y., Li, P. (2017). A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renewable Energy, 102: 241-257. https://doi.org/10.1016/j.renene.2016.10.030
dc.relation[38] Ziel, F., Croonenbroeck, C., Ambach, D. (2016). Forecasting wind power–modeling periodic and nonlinear effects under conditional heteroscedasticity. Applied Energy, 177: 285-297. https://doi.org/10.1016/j.apenergy.2016.05.111
dc.relation[39] Meng, A., Ge, J., Yin, H., Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114: 75-88. https://doi.org/10.1016/j.enconman.2016.02.013
dc.relation[40] Zjavka, L. (2015). Wind speed forecast correction models using polynomial neural networks. Renewable Energy, 83: 998-1006. https://doi.org/10.1016/j.renene.2015.04.054
dc.relation[41] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. (2016). Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 85: 790-809. https://doi.org/10.1016/j.renene.2015.07.004
dc.relation[42] Doucoure, B., Agbossou, K., Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92: 202-211. https://doi.org/10.1016/j.renene.2016.02.003
dc.relation[43] Zendehboudi, A., Baseer, M.A., Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199: 272-285. https://doi.org/10.1016/j.jclepro.2018.07.164
dc.relation[44] Barbounis, T.G., Theocharis, J.B. (2006). Locally rec urrent neural networks for long-term wind speed and power prediction. Neurocomputing, 69(4-6): 466-496. https://doi.org/10.1016/j.neucom.2005.02.003
dc.relation[45] Amjady, N., Keynia, F., Zareipour, H. (2011). Short-term wind power forecasting using ridgelet neural network. Electric Power Systems Research, 81(12): 2099-2107. https://doi.org/10.1016/j.epsr.2011.08.007
dc.relation[46] Blonbou, R. (2011). Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renewable Energy, 36(3): 1118-1124. https://doi.org/10.1016/j.renene.2010.08.026
dc.relation[47] Azad, H.B., Mekhilef, S., Ganapathy, V.G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2): 546-553. https://doi.org/10.1109/TSTE.2014.2300150
dc.relation[48] Xiao, L., Wang, J., Dong, Y., Wu, J. (2015). Combined forecasting models for wind energy forecasting: A case study in China. Renewable and Sustainable Energy Reviews, 44: 271-288. https://doi.org/10.1016/j.rser.2014.12.012
dc.relation[49] Wang, J., Hu, J., Ma, K., Zhang, Y. (2015). A selfadaptive hybrid approach for wind speed forecasting. Renewable Energy, 78: 374-385. https://doi.org/10.1016/j.renene.2014.12.074
dc.relation[50] Carpinone, A., Giorgio, M., Langella, R., Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric Power Systems Research, 122: 152-158. https://doi.org/10.1016/j.epsr.2014.12.025
dc.relation[51] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F. (2015). Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Applied Energy, 157: 183-194. https://doi.org/10.1016/j.apenergy.2015.08.014
dc.relation[52] Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016). A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87: 903-910. https://doi.org/10.1016/j.renene.2015.08.038
dc.relation[53] Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J. (2016). A novel bidirectional mechanism based on time series model for wind power forecasting. Applied Energy, 177: 793-803. https://doi.org/10.1016/j.apenergy.2016.03.096
dc.relation[54] Zhao, W., Wei, Y.M., Su, Z. (2016). One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 178: 886-901. https://doi.org/10.1016/j.apenergy.2016.06.098
dc.relation[55] Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T., Zhang, K. (2016). Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renewable Energy, 96: 727-737. https://doi.org/10.1016/j.renene.2016.05.023
dc.relation[56] Wang, S., Zhang, N., Wu, L., Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94: 629-636. https://doi.org/10.1016/j.renene.2016.03.103
dc.relation[57] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112: 115-124. https://doi.org/10.1016/j.enconman.2016.01.007
dc.relation[58] Jiang, P., Li, P. (2017). Research and application of a new hybrid wind speed forecasting model on BSO algorithm. Journal of Energy Engineering, 143(1): 04016019. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000362
dc.relation[59] Beale, M., Hagan, M., Demuth, H. (2020). Deep Learning Toolbox™ Getting Started Guide. The MathWorks. Inc.: Natick, MA, USA.
dc.relation[60] Rockmore, D.N. (2000). The FFT: An algorithm the whole family can use. Computing in Science & Engineering, 2(1): 60-64. https://doi.org/10.1109/5992.814659
dc.relation[61] Chu, E., George, A. (1999). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press.
dc.relation[62] Rueda Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04
dc.relation[63] Brigham, E. (1988). Fast Fourier Transform and Its Applications.
dc.relation[64] Zonst, A. (2000). Understanding the FFT, 2nd ed., 2000.
dc.relation[65] Hewitt, E., Hewitt, R. (1979). Archive for History of Exact Sciences: An Episode in Fourier Analysis.
dc.relation[66] Rasmussen, H.O. (1993). The wavelet Gibbs phenomenon. Wavelets, Fractals, and Fourier Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.), 123-142.
dc.relation[67] Kelly, S. (1995). Gibbs Phenomenon for Wavelets: Applied and Computational Harmonic Analysis, 1st ed., 1995.
dc.relation[68] Chan, R.W., Yuen, J.K., Lee, E.W., Arashpour, M. (2015). Application of Nonlinear-AutoregressiveExogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85: 1- 10. https://doi.org/10.1016/j.engstruct.2014.12.007
dc.relation[69] Widrow, B., Hoff, M.E. (1989). Adaptive switching circuits, in: Wescon Conf. Rec., 1989.
dc.relation[70] NOAA, NCEP North American Regional Reanalysis: NARR, (2016).
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceMathematical Modelling of Engineering Problems
dc.sourcehttps://www.iieta.org/journals/mmep/paper/10.18280/mmep.080313
dc.subjectFourier analysis
dc.subjectNonlinear autoregressive network
dc.subjectWind potential
dc.subjectReanalysis
dc.subjectWind-speed
dc.titleModeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución