dc.contributorGrimaldo Guerrero, John Willian
dc.contributorSilva Ortega, Jorge Iván
dc.creatorRuiz Logreira, Dairo Miguel
dc.date2021-04-22T16:48:57Z
dc.date2021-04-22T16:48:57Z
dc.date2021
dc.date.accessioned2023-10-03T19:11:48Z
dc.date.available2023-10-03T19:11:48Z
dc.identifierRuiz, D. (2021) Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/8176
dc.identifierhttps://hdl.handle.net/11323/8176
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168762
dc.descriptionIn this research work, the energy modelling of a photovoltaic pumping system for rural areas is developed, taking as a case study the village of Aguada de Pablo, Atlántico. In the document you will find the design, sizing and selection of components of the pump system and the solar photovoltaic system, as well as the strategy of control, operation and maintenance of these and the cost-benefit evaluation of the project. Simulations were carried out in the HOMER Energy software in order to evaluate the technical-economic performance, such as the correct one of the system, so that it can effectively validate its purpose and applicability.
dc.descriptionEn el presente trabajo de investigación se desarrollará la modelación energética de un sistema de bombeo fotovoltaico para zonas rurales, tomando como caso de estudio el corregimiento de Aguada de Pablo, Atlántico. En el documento se encontrará el diseño, dimensionamiento y selección de componentes del sistema de bombeo y el sistema solar fotovoltaico, así como la estrategia de control, operación y mantenimiento de estos y la evaluación de costo-beneficio del proyecto. Se realizaron simulaciones en el software HOMER Energy con la finalidad de evaluar el rendimiento técnico-económico, así como el correcto funcionamiento del sistema, de modo
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherIngeniería Eléctrica
dc.relationAli, B. (2018). Comparative assessment of the feasibility for solar irrigation pumps in Sudan. Renewable and Sustainable Energy Reviews, 81(May 2017), 413–420. https://doi.org/10.1016/j.rser.2017.08.008
dc.relationAmerisolar. (2015). Paneles Solares Transparentes. Retrieved March 15, 2020, from https://es.weamerisolar.eu/best-solar-panels/transparent-solar-panels/
dc.relationAmerisolar. (2019). What is the difference between monocrystalline and polycrystalline solar panels. Retrieved October 31, 2019, from https://www.weamerisolar.eu/the-differencebetween-monocrystalline-and-polycrystalline-solar-panels/
dc.relationBarata Carrelo Isaac, Almeida Hogan Rita, Narvarte Luis, M.-M. F. and C. L. M. (2019). Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the mediterranean region, 145, 2671–2682. Retrieved from https://doi.org/10.1016/j.renene.2019.08.030
dc.relationBarrueto-Guzmán, A., Barraza-Vicencio, R., Ardila-Rey, J. A., Núñez-Ahumada, E., González-Araya, A., & Arancibia-Moreno, G. (2018). A cost-effective methodology for sizing solar pv systems for existing irrigation facilities in chile. Energies, 11(7), 1873. https://doi.org/10.3390/en11071853
dc.relationBey, M., Hamidat, A., Benyoucef, B., & Nacer, T. (2016). Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renewable and Sustainable Energy Reviews, 63, 333–345. https://doi.org/10.1016/j.rser.2016.05.066
dc.relationBlanco, E., Veladre, S., & Fernandez, J. (1994). Sistemas de bombeo. Gijón, España: Universidad de Oviedo. Retrieved from https://agasca.net/wpcontent/uploads/2018/08/PDF_SistemasdeBombeo2.pdf
dc.relationBonduelle, G., & Muneret, X. (2000). VRLA batteries in telecom application: AGM or gel? TELESCON 2000 - 3rd International Telecommunications Energy Special Conference, Proceedings, 75–79. https://doi.org/10.1109/TELESC.2000.918408
dc.relationBrackett, C. A. (1990). Dense Wavelength Division Multiplexing Networks: Principles and Applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964. https://doi.org/10.1109/49.57798
dc.relationBrunini, R. G., Da Silva, A. B., De Paula, V. R., & De Oliveira, J. C. (2019). Economic analysis of photovoltaic energy in irrigating lettuce crops. Revista Brasileirade Ciencias Agrarias, 14(4). https://doi.org/10.5039/agraria.v14i4a6539
dc.relationBusinesswire. (2010). Evergreen Solar lanza los paneles solares String Ribbon TM certificados para instalaciones costeras en la feria solar Genera en Madrid ( España ) Director de Comunicaciones de Marketing. Retrieved February 27, 2020, from https://www.businesswire.com/news/home/20100519005896/es/
dc.relationCengel, Y. A., & Cimbala, J. M. (2012). Mecánica de Fluidos: fundamentos y aplicaciones. Statewide Agricultural Land Use Baseline 2015 (primera, Vol. 1). Mc Graw-Hill.
dc.relationChandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084–1099. https://doi.org/10.1016/j.rser.2015.04.083
dc.relationChen, J., Liu, Y., & Wang, L. (2019). Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/su11041065
dc.relationChen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16(8), 427–431. https://doi.org/10.1016/j.tplants.2011.03.011
dc.relationChilundo, R. J., Maúre, G. A., & Mahanjane, U. S. (2019). Dynamic mathematical model design of photovoltaic water pumping systems for horticultural crops irrigation: A guide to electrical energy potential assessment for increase access to electrical energy. Journal of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117878
dc.relationChilundo, R. J., Neves, D., & Mahanjane, U. S. (2019). Photovoltaic water pumping systems for horticultural crops irrigation: Advancements and opportunities towards a green energy strategy for Mozambique. Sustainable Energy Technologies and Assessments, 33(January), 61–68. https://doi.org/10.1016/j.seta.2019.03.004
dc.relationČotar, A. (2012). Photovoltaic systems. Retrieved from http://www.irenaistra.hr/uploads/media/Photovoltaic_systems.pdf
dc.relationDANE. (2020). Boletín Técnico: Producto Interno Bruto (PIB) IV Trimestre de 2019. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_produci on_y_gasto.pdf
dc.relationDe las Heras, S. (2011). Fluidos, bombas e instalaciones hidráulicas. Universidat Politécnica de Catalunya. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.3/36653/9788476538937.pdf
dc.relationDepartamento Nacional de Planeación (DNP). Plan Nacional de Desarrollo (Ley 1955) (2019). Colombia. Retrieved from http://www.andi.com.co/Uploads/LEY 1955 DEL 25 DE MAYO DE 2019_1 PLAN NACIONAL DE DESARROLLO 2.pdf
dc.relationDias, L., Gouveia, J. P., Lourenço, P., & Seixas, J. (2019). Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy, 81(November 2018), 725–735. https://doi.org/10.1016/j.landusepol.2018.11.036
dc.relationDinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024
dc.relationElkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196(August), 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085
dc.relationEvergreen Solar. (2009). ES-A SERIES photovoltaic panels. Retrieved from https://www.evergreensolar.com/upload/MAY 2009 NEW LITERATURE/English (US)/US_Datasheet_010609_Lo.pdf
dc.relationFarfan, J., Lohrmann, A., & Breyer, C. (2019). Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution. Renewable and Sustainable Energy Reviews, 110(April), 368–377. https://doi.org/10.1016/j.rser.2019.04.084
dc.relationFiggis, B., & Abdallah, A. (2019). Investigation of PV yield differences in a desert climate, 194(April), 136–140. https://doi.org/10.1016/j.solener.2019.10.044
dc.relationGao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Qin, T. (2013). Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Applied Energy, 105, 182–193. https://doi.org/10.1016/j.apenergy.2012.11.074
dc.relationGérenton, F., Eymard, J., Harrison, S., Clerc, R., & Muñoz, D. (2020). Analysis of edge losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells, 204(March 2019). https://doi.org/10.1016/j.solmat.2019.110213
dc.relationGobernación del atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132. Retrieved from http://www.atlantico.gov.co/images/stories/plan_desarrollo/plan_de_desarrollo_2016_2 016_definitivo.pdf%0Ahttp://cdim.esap.edu.co/BancoMedios/Documentos PDF/pd - fonseca - la guajira - formulación general - 2004 - 2007 (132 pag - 302 kb).pdf
dc.relationGobernación del Atlántico. (2016). Sur del atlántico, una nueva oportunidad. Unidad Nacional para la Gestión del Riesgo de Desastres. Retrieved from http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/20493
dc.relationGoetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy. Freiburgo: Harwood Academic Publishers GmbH. https://doi.org/10.1080/01425918208909875
dc.relationGreen Yellow. (2019). Monitoreo y mantenimiento de plantas solares. Exposolar. Retrieved from https://feriaexposolar.com/wp-content/uploads/2019/09/Presentacion-ExposolarMonitoreo-PV-Julio-2019.pdf
dc.relationGRUNDFOS. (2020). Bombas de carcasa bipartida. Retrieved March 8, 2020, from https://mx.grundfos.com/products/find-product/kp-kpv1.html
dc.relationGuzmán-Hernández, T. D. J., Araya-Rodríguez, F., Castro-Badilla, G., & Obando-Ulloa, J. M. (2016). Uso de la energía solar en sistemas de producción agropecuaria: producción más limpia y eficiencia energética. Revista Tecnología En Marcha, 29(8), 46. https://doi.org/10.18845/tm.v29i8.2984
dc.relationHan, C., Liu, J., Liang, H., Guo, X., & Li, L. (2013). An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater. Journal of Environmental Sciences (China), 25(2), 274–279. https://doi.org/10.1016/S1001- 0742(12)60034-5
dc.relationHassan, W., & Kamran, F. (2018). A hybrid PV/utility powered irrigation water pumping system for rural agricultural areas. Cogent Engineering, 5(1), 1–15. https://doi.org/10.1080/23311916.2018.1466383
dc.relationHassanien, R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095
dc.relationHernández-Delgado, P. M. (2015). El mango : Generalidades. Canarias, España. Retrieved from https://www.icia.es/icia/download/noticias/CharlaMango.pdf
dc.relationHicks, T. G. (1998). Bombas: su selección y aplicación. México: CIA EDITORIAL CONTINENTAL S.A. Retrieved from https://es.scribd.com/doc/220279833/Bombasby-Hicks-s
dc.relationHOMER. (2019). Operating cost. Retrieved May 8, 2020, from https://www.homerenergy.com/products/pro/docs/latest/operating_cost.html
dc.relationHowden, N. J. K., Burt, T. P., Worrall, F., Mathias, S., & Whelan, M. J. (2011). Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highquality groundwater? Water Resources Research, 47(11), 1–13. https://doi.org/10.1029/2011WR010843
dc.relationICONTEC. (1998). Código Eléctrico Colombiano: NTC 2050. Código Eléctrico Colombiano. Instituto Colombiano de Normas Técnicas y Certificación. Retrieved from https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/ntc 20500.pdf
dc.relationICONTEC. (2004). NTC 4552: Protección contra Rayos. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552.pdf
dc.relationICONTEC. (2008a). NTC 4552-1: Protección contra descargas eléctricas atmosféricas (Rayos). Parte 1: Principios generales. Ntc 4552 (Vol. Primera Ac). ICONTEC. Retrieved from https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC gQFjAA&url=http://destec-corp.com/download/49/&ei=0K0MU8- TMunP0wGH3YDIAg&usg=AFQjCNHQ0-NlAqn70czwB_akBRquWXtjwQ&cad=rja
dc.relationICONTEC. (2008b). NTC 4552-3: Protección Contra Descargas Eléctricas Atmosféricas (Rayos). Parte 3: Daños Físicos a Estructuras Y Amenazas a La Vida. Ntc. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552-3.pdf
dc.relationIEEE Power Engineering Society. (2000). IEEE Std 80-2000: Guide for Safety in AC Substation Grounding. Group (Vol. 2000). https://doi.org/10.1109/IEEESTD.2000.91902
dc.relationIngersoll-Rand. (1984). Cameron hydraulic data. (C. . Westaway & A. . Loomis, Eds.), Water. Nueva Jersey.
dc.relationIto, M., & Gerritsen, E. (2016). Geographical mapping of the performance of vertically installed bifacial modules., (june), 1–35. Retrieved from https://www.researchgate.net/publication/305140702_Geographical_Mapping_of_the_P erformance_of_Vertically_Installed_Bifacial_Modules
dc.relationJones, M. A., Odeh, I., Haddad, M., Mohammad, A. H., & Quinn, J. C. (2016). Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination, 387, 35–45. https://doi.org/10.1016/j.desal.2016.02.035
dc.relationKarami Rad, M., Omid, M., Alimardani, R., & Mousazadeh, H. (2017). A novel application of stand-alone photovoltaic system in agriculture: solar-powered Microner sprayer. International Journal of Ambient Energy, 38(1), 69–76. https://doi.org/10.1080/01430750.2015.1035800
dc.relationKhatib, T., Saleh, A., Eid, S., & Salah, M. (2019). Rehabilitation of Mauritanian oasis using an optimal photovoltaic based irrigation system. Energy Conversion and Management, 199(August), 111984. https://doi.org/10.1016/j.enconman.2019.111984
dc.relationKondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind energy systems. Stand-Alone and Hybrid Wind Energy System, 81–101. https://doi.org/10.1533/9781845699628.1.81
dc.relationLane, A. L., Boork, M., & Thollander, P. (2019). Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture. Energies, 12(18). https://doi.org/10.3390/en12183568
dc.relationLiu, W., Liu, L., Guan, C., Zhang, F., Li, M., Lv, H., … Ingenhoff, J. (2018). A novel agricultural photovoltaic system based on solar spectrum separation. Solar Energy, 162(November 2017), 84–94. https://doi.org/10.1016/j.solener.2017.12.053
dc.relationLiu, Z. (2014). China’s first photovoltaic and farming-integrated distributed photovoltaic power generation project connected to the grid. Retrieved from http://report.hebei.com.cn/system/2014/08/05/013771765.shtml
dc.relationLópez-Avendaño, J. E. (1987). Necesidades hídricas de los cultivos. Simposio sobre necesidades hídricas de los cultivos y su almacenamiento, AERYD. Retrieved from http://www.buyteknet.info/fileshare/data/analisis_lect/blanney.pdf
dc.relationMarucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012). The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/451934
dc.relationMAYRESA. (2020). Bombas Centrífugas. Retrieved March 7, 2020, from https://www.bombasparaagua.com.mx/bombas-centrifugas.html
dc.relationMercado-Javier, J., Rico-Ponce, H. R., Miranda-Salcedo, M. A., Teniente-Oviedo, R., & Treviño-De La Fuente, C. A. (2011). El manejo del riego en las plantaciones de mango de Michoacán. Apatzingán, Michoacán, Mexico: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias - INIFAP. Retrieved from http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/3457
dc.relationMinisterio de Agricultura de Colombia. (2017). “Solo el 20% de los cultivos en el país tienen algún sistema de riego.” Retrieved November 28, 2019, from https://www.minagricultura.gov.co/noticias/Paginas/“Solo-el-20-de-los-cultivos-en-elpaís-tienen-algún-sistema-de-riego”-Ministro-Iragorri.aspx
dc.relationMinisterio de Minas y Energía. (2013). Reglamento Técnico de Instalaciones Eléctricas (RETIE). Resolucion 9-0708. Bogotá D.C. Retrieved from https://www.minenergia.gov.co/documents/10180/1179442/Anexo+General+del+RETI E+vigente+actualizado+a+2015-1.pdf/57874c58-e61e-4104-8b8c-b64dbabedb13
dc.relationMoretti, S., & Marucci, A. (2019). A photovoltaic greenhouse with variable shading for the optimization of agricultural and energy production. Energies, 12(13). https://doi.org/10.3390/en12132589
dc.relationONU. (2015). Ciudades y comunidades sostenibles. Retrieved February 21, 2020, from https://www.un.org/sustainabledevelopment/es/cities/
dc.relationOrtiz Anaya, H. (2002). Analisis financiero aplicado. Universidad Externado de colombia (Vol. 52).
dc.relationOuld-Amrouche, S., Rekioua, D., & Hamidat, A. (2010). Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential. Applied Energy, 87(11), 3451–3459. https://doi.org/10.1016/j.apenergy.2010.05.021
dc.relationPEDROLLO. (2019). Catalogo de electrobombas. Retrieved from https://www.pedrollo.com/es/productos
dc.relationPerea, R. G., García, A. M., García, I. F., Poyato, E. C., Montesinos, P., & Díaz, J. A. R. (2019). Middleware to operate smart photovoltaic irrigation systems in real time. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071508
dc.relationPetroselli, A., Biondi, P., Colantoni, A., Monarca, D., Cecchini, M., Marucci, A., & Sirio, C. (2012). Photovoltaic pumps: Technical and practical aspects for applications in agriculture. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/343080
dc.relationPumps & systems. (2020). Pump Maintenance in 7 Easy Steps. Retrieved January 9, 2020, from https://www.pumpsandsystems.com/sponsored/pump-maintenance-7-easy-steps
dc.relationPV EASY. (2018). HALF-CUT CELL PANELS. Retrieved May 27, 2020, from https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cells
dc.relationRamirez, C. F. (2003). Subestaciones de alta y extra alta tensión (segunda). Mejia Villegas S.A - Ingenieros Consultores.
dc.relationReichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power. Energy Policy, 55, 117–127. https://doi.org/10.1016/j.enpol.2012.11.003
dc.relationRodríguez-gallegos, C. D., Bieri, M., Gandhi, O., Prakash, J., Reindl, T., & Panda, S. K. (2018). Monofacial vs bifacial Si-based PV modules : Which one is more costeffective ? Solar Energy, 176(October), 412–438. https://doi.org/10.1016/j.solener.2018.10.012
dc.relationRösch, P. (2015). Hidráulica en tuberías a presión. Retrieved from https://www.academia.edu/9948221/HIDRÁULICA_EN_TUBERÍAS_A_PRESIÓN_T UBERÍAS_A_PRESIÓN
dc.relationRubio-Aliaga, García-Cascales, M. S., Sánchez-Lozano, J. M., & Molina-García, A. (2019). Multidimensional analysis of groundwater pumping for irrigation purposes: Economic, energy and environmental characterization for PV power plant integration. Renewable Energy, 138, 174–186. https://doi.org/10.1016/j.renene.2019.01.077
dc.relationSENA. (1999). Operación y Mantenimiento de Pozos Profundos para Acueductos. Cali, Colombia.
dc.relationSistema de Documentación e Información Municipal de Colombia. (2017). Relaciones espaciales del entorno urbano regional. Retrieved from http://cdim.esap.edu.co/BancoMedios/Documentos PDF/funcion_espacial_sabanalarga_(95_pag_191_kb).pdf
dc.relationSmets, A., Jager, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar energy: the physics and engineering of photovoltaic conversion technologies and systems. UIT Cambridge LTD.
dc.relationSonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J. va., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses. Solar Energy, 85(3), 432–442. https://doi.org/10.1016/j.solener.2010.12.001
dc.relationSotelo-Ávila, G. (1994). Hidraúlica General (Primera). LIMUSA NORIEGA Editores.
dc.relationSTATISTA. (2018). Electricity prices around the world 2018. Retrieved July 19, 2020, from https://es.statista.com/estadisticas/635212/precios-de-la-electricidad-en-determinadospaises/ Y https://www.statista.com/statistics/478005/global-levelized-electricity-costprediction-by-country/
dc.relationTantichanakul, T., Chailapakul, O., & Tantavichet, N. (2011). Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions. Journal of Power Sources, 196(20), 8764–8772. https://doi.org/10.1016/j.jpowsour.2011.05.080
dc.relationTodde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of the Total Environment, 651, 2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175
dc.relationU.S. Department of Energy. (2015). The Five-Step Development Process Step 5: Project Operations and Maintenance. Retrieved from https://www.energy.gov/sites/prod/files/2015/09/f26/7a -Step5-OperationsMaintenance.pdf
dc.relationUNESCO. (2010). Llegar a los marginados: Informe de seguimiento de la EPT en el mundo. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000187865
dc.relationUniversidad de la Republica de Uruguay. (2015). Necesidades hídricas de los Cultivos. Retrieved from http://www.fagro.edu.uy/~hidrologia/riego/Necesidades hidricas de Cultivos intensivos2015.pdf
dc.relationVernia, V. (2018). Bombeo Solar: tecnología fotovoltaica. Retrieved from http://www.fisica.uji.es/priv/web master SIH007/treballs 2017/Bombeo solar_trabajo.pdf
dc.relationVictron Energy. (2014). Baterías Gel y AGM. Retrieved from http://www.technosun.com/es/descargas/VICTRON-MONOBLOCK-GEL-AGM-ficharev07-ES.pdf
dc.relationViejo-Zubicaray, M., & Álvares-Fernández, J. (2003). Bombas: teoría, diseño y aplicaciones. Desafíos del periodismo en la sociedad del conocimiento (tercera). LIMUSA NORIEGA Editore. https://doi.org/10.4000/books.eunrn.842
dc.relationWang, L., Wang, Y., & Chen, J. (2019). Assessment of the ecological niche of photovoltaic agriculture in China. Sustainability (Switzerland), 11(8), 1–17. https://doi.org/10.3390/su11082268
dc.relationWang, Y., Niu, H., Yang, L., Wang, W., & Liu, F. (2018). An optimization method for local consumption of photovoltaic power in a facility agriculture micro energy network. Energies, 11(6). https://doi.org/10.3390/en11061503
dc.relationWeselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593- 019-0581-3
dc.relationWettstein, S., Muir, K., Scharfy, D., & Stucki, M. (2017). The environmental mitigation potential of photovoltaic-powered irrigation in the production of South African Maize. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101772
dc.relationWSP. (2019). Technical Overview of Bifacial Modules: A Canadian Perspective. Retrieved from https://solarcanadaconference.ca/wp-content/uploads/2019/05/TechnicalOverview-of-Bi-Facial-Photovoltaic-Modules.pdf
dc.relationXM. (2019). Comunicado de crecimiento de la demanda de la región caribe. Retrieved September 19, 2019, from http://www.xm.com.co/corporativo/Paginas/sala-deprensa/comunicados.aspx
dc.relationXue, J. (2017). Photovoltaic agriculture - New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews, 73(January), 1–9. https://doi.org/10.1016/j.rser.2017.01.098
dc.relationYangtze Solar Power. (2018). Transparent & BIPV Solar Panel. Retrieved March 20, 2020, from https://www.yangtze-solar.com/product/219.html
dc.relationYano, A., Onoe, M., & Nakata, J. (2014). Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosystems Engineering, 122, 62–73. https://doi.org/10.1016/j.biosystemseng.2014.04.003
dc.relationZaki, A. M., & Eskander, M. N. (1996). Matching of photovolatic motor-pump systems for maximum efficiency operation. Renewable Energy, 7(3), 279–288. https://doi.org/https://doi.org/10.1016/0960-1481(95)00133-6
dc.relationZambon, I., Cecchini, M., Mosconi, E. M., & Colantoni, A. (2019). Revolutionizing towards sustainable agricultural systems: The role of energy. Energies, 12(19), 1–11. https://doi.org/10.3390/en12193659
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectPump
dc.subjectEnergy
dc.subjectProduction
dc.subjectSolar
dc.subjectControl
dc.subjectOperation
dc.subjectMaintenance
dc.subjectEvaluation
dc.subjectModelling
dc.subjectEnergetic
dc.subjectNPC
dc.subjectLCOE
dc.subjectBombeo
dc.subjectEnergía
dc.subjectGeneración
dc.subjectSolar
dc.subjectControl
dc.subjectOperación
dc.subjectMantenimiento
dc.subjectEvaluación
dc.subjectModelación
dc.subjectEnergética
dc.titleModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución