dc.contributor | Grimaldo Guerrero, John Willian | |
dc.contributor | Silva Ortega, Jorge Iván | |
dc.creator | Ruiz Logreira, Dairo Miguel | |
dc.date | 2021-04-22T16:48:57Z | |
dc.date | 2021-04-22T16:48:57Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:11:48Z | |
dc.date.available | 2023-10-03T19:11:48Z | |
dc.identifier | Ruiz, D. (2021) Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/8176 | |
dc.identifier | https://hdl.handle.net/11323/8176 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168762 | |
dc.description | In this research work, the energy modelling of a photovoltaic pumping system for rural areas is developed, taking as a case study the village of Aguada de Pablo, Atlántico. In the document you will find the design, sizing and selection of components of the pump system and the solar photovoltaic system, as well as the strategy of control, operation and maintenance of these and the cost-benefit evaluation of the project. Simulations were carried out in the HOMER Energy software in order to evaluate the technical-economic performance, such as the correct one of the system, so that it can effectively validate its purpose and applicability. | |
dc.description | En el presente trabajo de investigación se desarrollará la modelación energética de un sistema
de bombeo fotovoltaico para zonas rurales, tomando como caso de estudio el corregimiento
de Aguada de Pablo, Atlántico.
En el documento se encontrará el diseño, dimensionamiento y selección de componentes
del sistema de bombeo y el sistema solar fotovoltaico, así como la estrategia de control,
operación y mantenimiento de estos y la evaluación de costo-beneficio del proyecto.
Se realizaron simulaciones en el software HOMER Energy con la finalidad de evaluar el
rendimiento técnico-económico, así como el correcto funcionamiento del sistema, de modo | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Ingeniería Eléctrica | |
dc.relation | Ali, B. (2018). Comparative assessment of the feasibility for solar irrigation pumps in Sudan.
Renewable and Sustainable Energy Reviews, 81(May 2017), 413–420.
https://doi.org/10.1016/j.rser.2017.08.008 | |
dc.relation | Amerisolar. (2015). Paneles Solares Transparentes. Retrieved March 15, 2020, from
https://es.weamerisolar.eu/best-solar-panels/transparent-solar-panels/ | |
dc.relation | Amerisolar. (2019). What is the difference between monocrystalline and polycrystalline solar
panels. Retrieved October 31, 2019, from https://www.weamerisolar.eu/the-differencebetween-monocrystalline-and-polycrystalline-solar-panels/ | |
dc.relation | Barata Carrelo Isaac, Almeida Hogan Rita, Narvarte Luis, M.-M. F. and C. L. M. (2019).
Comparative analysis of the economic feasibility of five large-power photovoltaic
irrigation systems in the mediterranean region, 145, 2671–2682. Retrieved from
https://doi.org/10.1016/j.renene.2019.08.030 | |
dc.relation | Barrueto-Guzmán, A., Barraza-Vicencio, R., Ardila-Rey, J. A., Núñez-Ahumada, E.,
González-Araya, A., & Arancibia-Moreno, G. (2018). A cost-effective methodology for
sizing solar pv systems for existing irrigation facilities in chile. Energies, 11(7), 1873.
https://doi.org/10.3390/en11071853 | |
dc.relation | Bey, M., Hamidat, A., Benyoucef, B., & Nacer, T. (2016). Viability study of the use of grid
connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renewable
and Sustainable Energy Reviews, 63, 333–345.
https://doi.org/10.1016/j.rser.2016.05.066 | |
dc.relation | Blanco, E., Veladre, S., & Fernandez, J. (1994). Sistemas de bombeo. Gijón, España:
Universidad de Oviedo. Retrieved from https://agasca.net/wpcontent/uploads/2018/08/PDF_SistemasdeBombeo2.pdf | |
dc.relation | Bonduelle, G., & Muneret, X. (2000). VRLA batteries in telecom application: AGM or gel?
TELESCON 2000 - 3rd International Telecommunications Energy Special Conference,
Proceedings, 75–79. https://doi.org/10.1109/TELESC.2000.918408 | |
dc.relation | Brackett, C. A. (1990). Dense Wavelength Division Multiplexing Networks: Principles and
Applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964.
https://doi.org/10.1109/49.57798 | |
dc.relation | Brunini, R. G., Da Silva, A. B., De Paula, V. R., & De Oliveira, J. C. (2019). Economic
analysis of photovoltaic energy in irrigating lettuce crops. Revista Brasileirade Ciencias
Agrarias, 14(4). https://doi.org/10.5039/agraria.v14i4a6539 | |
dc.relation | Businesswire. (2010). Evergreen Solar lanza los paneles solares String Ribbon TM
certificados para instalaciones costeras en la feria solar Genera en Madrid ( España )
Director de Comunicaciones de Marketing. Retrieved February 27, 2020, from
https://www.businesswire.com/news/home/20100519005896/es/ | |
dc.relation | Cengel, Y. A., & Cimbala, J. M. (2012). Mecánica de Fluidos: fundamentos y aplicaciones.
Statewide Agricultural Land Use Baseline 2015 (primera, Vol. 1). Mc Graw-Hill. | |
dc.relation | Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water
pumping system technology for irrigation and community drinking water supplies.
Renewable and Sustainable Energy Reviews, 49, 1084–1099.
https://doi.org/10.1016/j.rser.2015.04.083 | |
dc.relation | Chen, J., Liu, Y., & Wang, L. (2019). Research on coupling coordination development for
photovoltaic agriculture system in China. Sustainability (Switzerland), 11(4).
https://doi.org/10.3390/su11041065 | |
dc.relation | Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by
photosynthesis. Trends in Plant Science, 16(8), 427–431.
https://doi.org/10.1016/j.tplants.2011.03.011 | |
dc.relation | Chilundo, R. J., Maúre, G. A., & Mahanjane, U. S. (2019). Dynamic mathematical model
design of photovoltaic water pumping systems for horticultural crops irrigation: A guide
to electrical energy potential assessment for increase access to electrical energy. Journal
of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117878 | |
dc.relation | Chilundo, R. J., Neves, D., & Mahanjane, U. S. (2019). Photovoltaic water pumping systems
for horticultural crops irrigation: Advancements and opportunities towards a green
energy strategy for Mozambique. Sustainable Energy Technologies and Assessments,
33(January), 61–68. https://doi.org/10.1016/j.seta.2019.03.004 | |
dc.relation | Čotar, A. (2012). Photovoltaic systems. Retrieved from http://www.irenaistra.hr/uploads/media/Photovoltaic_systems.pdf | |
dc.relation | DANE. (2020). Boletín Técnico: Producto Interno Bruto (PIB) IV Trimestre de 2019.
Retrieved from
https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_produci
on_y_gasto.pdf | |
dc.relation | De las Heras, S. (2011). Fluidos, bombas e instalaciones hidráulicas. Universidat Politécnica
de Catalunya. Retrieved from
https://upcommons.upc.edu/bitstream/handle/2099.3/36653/9788476538937.pdf | |
dc.relation | Departamento Nacional de Planeación (DNP). Plan Nacional de Desarrollo (Ley 1955)
(2019). Colombia. Retrieved from http://www.andi.com.co/Uploads/LEY 1955 DEL 25 DE MAYO DE 2019_1 PLAN NACIONAL DE DESARROLLO 2.pdf | |
dc.relation | Dias, L., Gouveia, J. P., Lourenço, P., & Seixas, J. (2019). Interplay between the potential of
photovoltaic systems and agricultural land use. Land Use Policy, 81(November 2018),
725–735. https://doi.org/10.1016/j.landusepol.2018.11.036 | |
dc.relation | Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and
Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024 | |
dc.relation | Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and
techno-economic design of grid-isolated hybrid renewable energy system for
electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy
Conversion and Management, 196(August), 1453–1478.
https://doi.org/10.1016/j.enconman.2019.06.085 | |
dc.relation | Evergreen Solar. (2009). ES-A SERIES photovoltaic panels. Retrieved from
https://www.evergreensolar.com/upload/MAY 2009 NEW LITERATURE/English
(US)/US_Datasheet_010609_Lo.pdf | |
dc.relation | Farfan, J., Lohrmann, A., & Breyer, C. (2019). Integration of greenhouse agriculture to the
energy infrastructure as an alimentary solution. Renewable and Sustainable Energy
Reviews, 110(April), 368–377. https://doi.org/10.1016/j.rser.2019.04.084 | |
dc.relation | Figgis, B., & Abdallah, A. (2019). Investigation of PV yield differences in a desert climate,
194(April), 136–140. https://doi.org/10.1016/j.solener.2019.10.044 | |
dc.relation | Gao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Qin, T. (2013). Feasibility evaluation
of solar photovoltaic pumping irrigation system based on analysis of dynamic variation
of groundwater table. Applied Energy, 105, 182–193.
https://doi.org/10.1016/j.apenergy.2012.11.074 | |
dc.relation | Gérenton, F., Eymard, J., Harrison, S., Clerc, R., & Muñoz, D. (2020). Analysis of edge
losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells,
204(March 2019). https://doi.org/10.1016/j.solmat.2019.110213 | |
dc.relation | Gobernación del atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del
Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132. Retrieved from
http://www.atlantico.gov.co/images/stories/plan_desarrollo/plan_de_desarrollo_2016_2
016_definitivo.pdf%0Ahttp://cdim.esap.edu.co/BancoMedios/Documentos PDF/pd -
fonseca - la guajira - formulación general - 2004 - 2007 (132 pag - 302 kb).pdf | |
dc.relation | Gobernación del Atlántico. (2016). Sur del atlántico, una nueva oportunidad. Unidad
Nacional para la Gestión del Riesgo de Desastres. Retrieved from
http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/20493 | |
dc.relation | Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and
Plant Cultivation. International Journal of Solar Energy. Freiburgo: Harwood Academic
Publishers GmbH. https://doi.org/10.1080/01425918208909875 | |
dc.relation | Green Yellow. (2019). Monitoreo y mantenimiento de plantas solares. Exposolar. Retrieved
from https://feriaexposolar.com/wp-content/uploads/2019/09/Presentacion-ExposolarMonitoreo-PV-Julio-2019.pdf | |
dc.relation | GRUNDFOS. (2020). Bombas de carcasa bipartida. Retrieved March 8, 2020, from
https://mx.grundfos.com/products/find-product/kp-kpv1.html | |
dc.relation | Guzmán-Hernández, T. D. J., Araya-Rodríguez, F., Castro-Badilla, G., & Obando-Ulloa, J.
M. (2016). Uso de la energía solar en sistemas de producción agropecuaria: producción
más limpia y eficiencia energética. Revista Tecnología En Marcha, 29(8), 46.
https://doi.org/10.18845/tm.v29i8.2984 | |
dc.relation | Han, C., Liu, J., Liang, H., Guo, X., & Li, L. (2013). An innovative integrated system
utilizing solar energy as power for the treatment of decentralized wastewater. Journal of
Environmental Sciences (China), 25(2), 274–279. https://doi.org/10.1016/S1001-
0742(12)60034-5 | |
dc.relation | Hassan, W., & Kamran, F. (2018). A hybrid PV/utility powered irrigation water pumping
system for rural agricultural areas. Cogent Engineering, 5(1), 1–15.
https://doi.org/10.1080/23311916.2018.1466383 | |
dc.relation | Hassanien, R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy
in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001.
https://doi.org/10.1016/j.rser.2015.10.095 | |
dc.relation | Hernández-Delgado, P. M. (2015). El mango : Generalidades. Canarias, España. Retrieved
from https://www.icia.es/icia/download/noticias/CharlaMango.pdf | |
dc.relation | Hicks, T. G. (1998). Bombas: su selección y aplicación. México: CIA EDITORIAL
CONTINENTAL S.A. Retrieved from https://es.scribd.com/doc/220279833/Bombasby-Hicks-s | |
dc.relation | HOMER. (2019). Operating cost. Retrieved May 8, 2020, from
https://www.homerenergy.com/products/pro/docs/latest/operating_cost.html | |
dc.relation | Howden, N. J. K., Burt, T. P., Worrall, F., Mathias, S., & Whelan, M. J. (2011). Nitrate
pollution in intensively farmed regions: What are the prospects for sustaining highquality groundwater? Water Resources Research, 47(11), 1–13.
https://doi.org/10.1029/2011WR010843 | |
dc.relation | ICONTEC. (1998). Código Eléctrico Colombiano: NTC 2050. Código Eléctrico Colombiano.
Instituto Colombiano de Normas Técnicas y Certificación. Retrieved from
https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/ntc 20500.pdf | |
dc.relation | ICONTEC. (2004). NTC 4552: Protección contra Rayos. ICONTEC. Retrieved from
http://tienda.icontec.org/brief/NTC4552.pdf | |
dc.relation | ICONTEC. (2008a). NTC 4552-1: Protección contra descargas eléctricas atmosféricas
(Rayos). Parte 1: Principios generales. Ntc 4552 (Vol. Primera Ac). ICONTEC.
Retrieved from
https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC
gQFjAA&url=http://destec-corp.com/download/49/&ei=0K0MU8-
TMunP0wGH3YDIAg&usg=AFQjCNHQ0-NlAqn70czwB_akBRquWXtjwQ&cad=rja | |
dc.relation | ICONTEC. (2008b). NTC 4552-3: Protección Contra Descargas Eléctricas Atmosféricas
(Rayos). Parte 3: Daños Físicos a Estructuras Y Amenazas a La Vida. Ntc. ICONTEC.
Retrieved from http://tienda.icontec.org/brief/NTC4552-3.pdf | |
dc.relation | IEEE Power Engineering Society. (2000). IEEE Std 80-2000: Guide for Safety in AC
Substation Grounding. Group (Vol. 2000).
https://doi.org/10.1109/IEEESTD.2000.91902 | |
dc.relation | Ingersoll-Rand. (1984). Cameron hydraulic data. (C. . Westaway & A. . Loomis, Eds.),
Water. Nueva Jersey. | |
dc.relation | Ito, M., & Gerritsen, E. (2016). Geographical mapping of the performance of vertically
installed bifacial modules., (june), 1–35. Retrieved from
https://www.researchgate.net/publication/305140702_Geographical_Mapping_of_the_P
erformance_of_Vertically_Installed_Bifacial_Modules | |
dc.relation | Jones, M. A., Odeh, I., Haddad, M., Mohammad, A. H., & Quinn, J. C. (2016). Economic
analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination, 387, 35–45.
https://doi.org/10.1016/j.desal.2016.02.035 | |
dc.relation | Karami Rad, M., Omid, M., Alimardani, R., & Mousazadeh, H. (2017). A novel application
of stand-alone photovoltaic system in agriculture: solar-powered Microner sprayer.
International Journal of Ambient Energy, 38(1), 69–76.
https://doi.org/10.1080/01430750.2015.1035800 | |
dc.relation | Khatib, T., Saleh, A., Eid, S., & Salah, M. (2019). Rehabilitation of Mauritanian oasis using
an optimal photovoltaic based irrigation system. Energy Conversion and Management,
199(August), 111984. https://doi.org/10.1016/j.enconman.2019.111984 | |
dc.relation | Kondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind
energy systems. Stand-Alone and Hybrid Wind Energy System, 81–101.
https://doi.org/10.1533/9781845699628.1.81 | |
dc.relation | Lane, A. L., Boork, M., & Thollander, P. (2019). Barriers, driving forces and non-energy
benefits for battery storage in photovoltaic (PV) systems in modern agriculture.
Energies, 12(18). https://doi.org/10.3390/en12183568 | |
dc.relation | Liu, W., Liu, L., Guan, C., Zhang, F., Li, M., Lv, H., … Ingenhoff, J. (2018). A novel
agricultural photovoltaic system based on solar spectrum separation. Solar Energy,
162(November 2017), 84–94. https://doi.org/10.1016/j.solener.2017.12.053 | |
dc.relation | Liu, Z. (2014). China’s first photovoltaic and farming-integrated distributed photovoltaic
power generation project connected to the grid. Retrieved from
http://report.hebei.com.cn/system/2014/08/05/013771765.shtml | |
dc.relation | López-Avendaño, J. E. (1987). Necesidades hídricas de los cultivos. Simposio sobre
necesidades hídricas de los cultivos y su almacenamiento, AERYD. Retrieved from
http://www.buyteknet.info/fileshare/data/analisis_lect/blanney.pdf | |
dc.relation | Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012).
The semitransparent photovoltaic films for Mediterranean greenhouse: A new
sustainable technology. Mathematical Problems in Engineering, 2012.
https://doi.org/10.1155/2012/451934 | |
dc.relation | MAYRESA. (2020). Bombas Centrífugas. Retrieved March 7, 2020, from
https://www.bombasparaagua.com.mx/bombas-centrifugas.html | |
dc.relation | Mercado-Javier, J., Rico-Ponce, H. R., Miranda-Salcedo, M. A., Teniente-Oviedo, R., &
Treviño-De La Fuente, C. A. (2011). El manejo del riego en las plantaciones de mango
de Michoacán. Apatzingán, Michoacán, Mexico: Instituto Nacional de Investigaciones
Forestales, Agrícolas y Pecuarias - INIFAP. Retrieved from
http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/3457 | |
dc.relation | Ministerio de Agricultura de Colombia. (2017). “Solo el 20% de los cultivos en el país tienen
algún sistema de riego.” Retrieved November 28, 2019, from
https://www.minagricultura.gov.co/noticias/Paginas/“Solo-el-20-de-los-cultivos-en-elpaís-tienen-algún-sistema-de-riego”-Ministro-Iragorri.aspx | |
dc.relation | Ministerio de Minas y Energía. (2013). Reglamento Técnico de Instalaciones Eléctricas
(RETIE). Resolucion 9-0708. Bogotá D.C. Retrieved from
https://www.minenergia.gov.co/documents/10180/1179442/Anexo+General+del+RETI
E+vigente+actualizado+a+2015-1.pdf/57874c58-e61e-4104-8b8c-b64dbabedb13 | |
dc.relation | Moretti, S., & Marucci, A. (2019). A photovoltaic greenhouse with variable shading for the
optimization of agricultural and energy production. Energies, 12(13).
https://doi.org/10.3390/en12132589 | |
dc.relation | ONU. (2015). Ciudades y comunidades sostenibles. Retrieved February 21, 2020, from
https://www.un.org/sustainabledevelopment/es/cities/ | |
dc.relation | Ortiz Anaya, H. (2002). Analisis financiero aplicado. Universidad Externado de colombia
(Vol. 52). | |
dc.relation | Ould-Amrouche, S., Rekioua, D., & Hamidat, A. (2010). Modelling photovoltaic water
pumping systems and evaluation of their CO2 emissions mitigation potential. Applied
Energy, 87(11), 3451–3459. https://doi.org/10.1016/j.apenergy.2010.05.021 | |
dc.relation | PEDROLLO. (2019). Catalogo de electrobombas. Retrieved from
https://www.pedrollo.com/es/productos | |
dc.relation | Perea, R. G., García, A. M., García, I. F., Poyato, E. C., Montesinos, P., & Díaz, J. A. R.
(2019). Middleware to operate smart photovoltaic irrigation systems in real time. Water
(Switzerland), 11(7). https://doi.org/10.3390/w11071508 | |
dc.relation | Petroselli, A., Biondi, P., Colantoni, A., Monarca, D., Cecchini, M., Marucci, A., & Sirio, C.
(2012). Photovoltaic pumps: Technical and practical aspects for applications in
agriculture. Mathematical Problems in Engineering, 2012.
https://doi.org/10.1155/2012/343080 | |
dc.relation | Pumps & systems. (2020). Pump Maintenance in 7 Easy Steps. Retrieved January 9, 2020,
from https://www.pumpsandsystems.com/sponsored/pump-maintenance-7-easy-steps | |
dc.relation | PV EASY. (2018). HALF-CUT CELL PANELS. Retrieved May 27, 2020, from
https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cells | |
dc.relation | Ramirez, C. F. (2003). Subestaciones de alta y extra alta tensión (segunda). Mejia Villegas
S.A - Ingenieros Consultores. | |
dc.relation | Reichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power.
Energy Policy, 55, 117–127. https://doi.org/10.1016/j.enpol.2012.11.003 | |
dc.relation | Rodríguez-gallegos, C. D., Bieri, M., Gandhi, O., Prakash, J., Reindl, T., & Panda, S. K.
(2018). Monofacial vs bifacial Si-based PV modules : Which one is more costeffective ? Solar Energy, 176(October), 412–438.
https://doi.org/10.1016/j.solener.2018.10.012 | |
dc.relation | Rösch, P. (2015). Hidráulica en tuberías a presión. Retrieved from
https://www.academia.edu/9948221/HIDRÁULICA_EN_TUBERÍAS_A_PRESIÓN_T
UBERÍAS_A_PRESIÓN | |
dc.relation | Rubio-Aliaga, García-Cascales, M. S., Sánchez-Lozano, J. M., & Molina-García, A. (2019).
Multidimensional analysis of groundwater pumping for irrigation purposes: Economic,
energy and environmental characterization for PV power plant integration. Renewable
Energy, 138, 174–186. https://doi.org/10.1016/j.renene.2019.01.077 | |
dc.relation | SENA. (1999). Operación y Mantenimiento de Pozos Profundos para Acueductos. Cali,
Colombia. | |
dc.relation | Sistema de Documentación e Información Municipal de Colombia. (2017). Relaciones
espaciales del entorno urbano regional. Retrieved from
http://cdim.esap.edu.co/BancoMedios/Documentos
PDF/funcion_espacial_sabanalarga_(95_pag_191_kb).pdf | |
dc.relation | Smets, A., Jager, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar energy: the
physics and engineering of photovoltaic conversion technologies and systems. UIT
Cambridge LTD. | |
dc.relation | Sonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J. va., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a concentrated photovoltaic energy system with
static linear Fresnel lenses. Solar Energy, 85(3), 432–442.
https://doi.org/10.1016/j.solener.2010.12.001 | |
dc.relation | Sotelo-Ávila, G. (1994). Hidraúlica General (Primera). LIMUSA NORIEGA Editores. | |
dc.relation | STATISTA. (2018). Electricity prices around the world 2018. Retrieved July 19, 2020, from
https://es.statista.com/estadisticas/635212/precios-de-la-electricidad-en-determinadospaises/ Y https://www.statista.com/statistics/478005/global-levelized-electricity-costprediction-by-country/ | |
dc.relation | Tantichanakul, T., Chailapakul, O., & Tantavichet, N. (2011). Gelled electrolytes for use in
absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under
100% depth of discharge conditions. Journal of Power Sources, 196(20), 8764–8772.
https://doi.org/10.1016/j.jpowsour.2011.05.080 | |
dc.relation | Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L.
(2019). Energy and environmental performances of hybrid photovoltaic irrigation
systems in Mediterranean intensive and super-intensive olive orchards. Science of the
Total Environment, 651, 2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175 | |
dc.relation | U.S. Department of Energy. (2015). The Five-Step Development Process Step 5: Project
Operations and Maintenance. Retrieved from
https://www.energy.gov/sites/prod/files/2015/09/f26/7a -Step5-OperationsMaintenance.pdf | |
dc.relation | UNESCO. (2010). Llegar a los marginados: Informe de seguimiento de la EPT en el mundo.
Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000187865 | |
dc.relation | Universidad de la Republica de Uruguay. (2015). Necesidades hídricas de los Cultivos. Retrieved from http://www.fagro.edu.uy/~hidrologia/riego/Necesidades hidricas de
Cultivos intensivos2015.pdf | |
dc.relation | Vernia, V. (2018). Bombeo Solar: tecnología fotovoltaica. Retrieved from
http://www.fisica.uji.es/priv/web master SIH007/treballs 2017/Bombeo
solar_trabajo.pdf | |
dc.relation | Victron Energy. (2014). Baterías Gel y AGM. Retrieved from
http://www.technosun.com/es/descargas/VICTRON-MONOBLOCK-GEL-AGM-ficharev07-ES.pdf | |
dc.relation | Viejo-Zubicaray, M., & Álvares-Fernández, J. (2003). Bombas: teoría, diseño y aplicaciones.
Desafíos del periodismo en la sociedad del conocimiento (tercera). LIMUSA NORIEGA
Editore. https://doi.org/10.4000/books.eunrn.842 | |
dc.relation | Wang, L., Wang, Y., & Chen, J. (2019). Assessment of the ecological niche of photovoltaic
agriculture in China. Sustainability (Switzerland), 11(8), 1–17.
https://doi.org/10.3390/su11082268 | |
dc.relation | Wang, Y., Niu, H., Yang, L., Wang, W., & Liu, F. (2018). An optimization method for local
consumption of photovoltaic power in a facility agriculture micro energy network.
Energies, 11(6). https://doi.org/10.3390/en11061503 | |
dc.relation | Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019).
Agrophotovoltaic systems: applications, challenges, and opportunities. A review.
Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593-
019-0581-3 | |
dc.relation | Wettstein, S., Muir, K., Scharfy, D., & Stucki, M. (2017). The environmental mitigation
potential of photovoltaic-powered irrigation in the production of South African Maize. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101772 | |
dc.relation | WSP. (2019). Technical Overview of Bifacial Modules: A Canadian Perspective. Retrieved
from https://solarcanadaconference.ca/wp-content/uploads/2019/05/TechnicalOverview-of-Bi-Facial-Photovoltaic-Modules.pdf | |
dc.relation | XM. (2019). Comunicado de crecimiento de la demanda de la región caribe. Retrieved
September 19, 2019, from http://www.xm.com.co/corporativo/Paginas/sala-deprensa/comunicados.aspx | |
dc.relation | Xue, J. (2017). Photovoltaic agriculture - New opportunity for photovoltaic applications in
China. Renewable and Sustainable Energy Reviews, 73(January), 1–9.
https://doi.org/10.1016/j.rser.2017.01.098 | |
dc.relation | Yangtze Solar Power. (2018). Transparent & BIPV Solar Panel. Retrieved March 20, 2020,
from https://www.yangtze-solar.com/product/219.html | |
dc.relation | Yano, A., Onoe, M., & Nakata, J. (2014). Prototype semi-transparent photovoltaic modules
for greenhouse roof applications. Biosystems Engineering, 122, 62–73.
https://doi.org/10.1016/j.biosystemseng.2014.04.003 | |
dc.relation | Zaki, A. M., & Eskander, M. N. (1996). Matching of photovolatic motor-pump systems for
maximum efficiency operation. Renewable Energy, 7(3), 279–288.
https://doi.org/https://doi.org/10.1016/0960-1481(95)00133-6 | |
dc.relation | Zambon, I., Cecchini, M., Mosconi, E. M., & Colantoni, A. (2019). Revolutionizing towards
sustainable agricultural systems: The role of energy. Energies, 12(19), 1–11.
https://doi.org/10.3390/en12193659 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Pump | |
dc.subject | Energy | |
dc.subject | Production | |
dc.subject | Solar | |
dc.subject | Control | |
dc.subject | Operation | |
dc.subject | Maintenance | |
dc.subject | Evaluation | |
dc.subject | Modelling | |
dc.subject | Energetic | |
dc.subject | NPC | |
dc.subject | LCOE | |
dc.subject | Bombeo | |
dc.subject | Energía | |
dc.subject | Generación | |
dc.subject | Solar | |
dc.subject | Control | |
dc.subject | Operación | |
dc.subject | Mantenimiento | |
dc.subject | Evaluación | |
dc.subject | Modelación | |
dc.subject | Energética | |
dc.title | Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales | |
dc.type | Trabajo de grado - Pregrado | |
dc.type | http://purl.org/coar/resource_type/c_7a1f | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/TP | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |