dc.creatorLazarotto, Joseane
dc.creatorDA BOIT MARTINELLO, KATIA
dc.creatorgeorgin, jordana
dc.creatorFranco, Dison S.P.
dc.creatorNetto, Matias S.
dc.creatorPiccilli, Daniel G.A.
dc.creatorSilva, Luis F.O.
dc.creatorLima, Eder Claudio
dc.creatorDotto, Guilherme Luiz
dc.date2022-06-14T16:19:57Z
dc.date2024-04
dc.date2022-06-14T16:19:57Z
dc.date2022-04
dc.date.accessioned2023-10-03T19:11:09Z
dc.date.available2023-10-03T19:11:09Z
dc.identifierJoseane S. Lazarotto, Kátia da Boit Martinello, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Luis F.O. Silva, Eder C. Lima, Guilherme L. Dotto, Application of araçá fruit husks (Psidium cattleianum) in the reparation of activated carbon with FeCl3 for atrazine herbicide adsorption, Chemical Engineering Research and Design, Volume 180, 2022, Pages 67-78, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2022.01.044.
dc.identifier0263-8762
dc.identifierhttps://hdl.handle.net/11323/9254
dc.identifier10.1016/j.cherd.2022.01.044.
dc.identifier17443563
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168643
dc.descriptionThe residual husks of the edible fruits of Psidium cattleianum were carbonized with FeCl3 as an activating agent and used as an adsorbent to remove the toxic herbicide. After the carbonization step, changes in the material’s structure were found. Activated carbon showed characteristics of microporous materials with a pore volume of 0.280 cm3 g−1 and surface area of 431 m2 g−1. Micrographs revealed the emergence of new cavities with a uniform and circular shape. The FTIR spectra showed the disappearance of some bands, remaining bands belonging to functional groups containing carbon, oxygen, and hydrogen. The XRD patterns confirmed the amorphous structure of the material even after the carbonization step, composed of amorphous graphitic carbon. EDS analysis showed that the carbon percentage increased and the oxygen decreased after the carbonization. The experiments were performed at neutral pH using 1 g L−1 of adsorbent. In equilibrium isotherms, the temperature played a considerable role in the adsorption capacity, increasing from 26.39 mg g−1 to 35.67 mg g−1 when the temperature varied from 298 to 328 K. The Liu isotherms were the ones that best fit the isotherm data. The changes in the adsorption enthalpy were endothermic (ΔH° 129.5 kJ mol−1). The general order kinetic model was the most adequate for kinetic data, presenting the lowest values of the Bayesian Information Criterion. Thus, activated carbon developed from the residues of the “araça” fruit showed promise in removing atrazine from aqueous solutions, with the great advantage of its high efficiency under neutral pH solutions and mild temperatures.
dc.format12 paginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitution of Chemical Engineers
dc.publisherUnited Kingdom
dc.relationChemical Engineering Research and Design
dc.relationAfolabi, I.C., Popoola, S.I., Bello, O.S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network (2020) Chemometrics and Intelligent Laboratory Systems, 203, art. no. 104053. Cited 20 times. www.elsevier.com/locate/chemometrics doi: 10.1016/j.chemolab.2020.104053
dc.relationAlahabadi, A., Moussavi, G. Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling (2017) Journal of Molecular Liquids, 242, pp. 40-52. Cited 38 times. doi: 0.1016/j.molliq.2017.06.116
dc.relationAlmeida Lage, A.L., Ribeiro, J.M., de Souza-Fagundes, E.M., Brugnera, M.F., Martins, D.C.D.S. Efficient atrazine degradation catalyzed by manganese porphyrins: Determination of atrazine degradation products and their toxicity evaluation by human blood cells test models (2019) Journal of Hazardous Materials, 378, art. no. 120748. Cited 10 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2019.120748
dc.relationAndrade, L.L.D., do Espirito Santo Pereira, A., Fernandes Fraceto, L., Bueno dos Reis Martinez, C. Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach (Open Access) (2019) Science of the Total Environment, 663, pp. 548-559. Cited 21 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2019.01.380
dc.relationBedia, J., Belver, C., Ponce, S., Rodriguez, J., Rodriguez, J.J. Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum (2018) Chemical Engineering Journal, 333, pp. 58-65. Cited 62 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2017.09.161
dc.relationBittencourt, G.M., Firmiano, D.M., Fachini, R.P., Lacaz-Ruiz, R., Fernandes, A.M., Oliveira, A.L. Application of Green Technology for the Acquisition of Extracts of Araçá (Psidium grandifolium Mart. ex DC.) Using Supercritical CO2 and Pressurized Ethanol: Characterization and Analysis of Activity (2019) Journal of Food Science, 84 (6), pp. 1297-1307. Cited 11 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1750-3841 doi: 10.1111/1750-3841.14584
dc.relationBo, L., Kiriarachchi, H.D., Bobb, J.A., Ibrahim, A.A., El-shall, M.S. Preparation, activity, and mechanism of ZnIn2S4-based catalysts for photocatalytic degradation of atrazine in aqueous solution (2020) Journal of Water Process Engineering, 36, art. no. 101334. Cited 8 times. http://www.journals.elsevier.com/journal-of-water-process-engineering/ doi: 10.1016/j.jwpe.2020.101334
dc.relationBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E. Introduction (2017) Adsorption Processes for Water Treatment and Purification, pp. 1-18. Cited 58 times. http://www.springer.com/in/book/9783319581354 ISBN: 978-331958136-1; 978-331958135-4 doi: 10.1007/978-3-319-58136-1_1
dc.relationBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J. Adsorption in water treatment (2019) Chem. Mol. Sci. Chem. Eng., pp. 1-19. Cited 28 times.
dc.relationBounaas, M., Bouguettoucha, A., Chebli, D., Gatica, J.M., Vidal, H. Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue (2021) Arabian Journal for Science and Engineering, 46 (1), pp. 325-341. Cited 15 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-020-04739-5
dc.relationCao, Y., Jiang, S., Zhang, Y., Xu, J., Qiu, L., Wang, L. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105727. Cited 10 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105727
dc.relationChabalala, M.B., Al-Abri, M.Z., Mamba, B.B., Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes (2021) Chemical Engineering Research and Design, 169, pp. 19-32. Cited 17 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1016/j.cherd.2021.02.010
dc.relationChen, G.-C., Shan, X.-Q., Wang, Y.-S., Pei, Z.-G., Shen, X.-E., Wen, B., Owens, G. Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes (2008) Environmental Science and Technology, 42 (22), pp. 8297-8302. Cited 98 times. doi: 10.1021/es801376w
dc.relationCunha, M.R., Lima, E.C., Lima, D.R., da Silva, R.S., Thue, P.S., Seliem, M.K., Sher, F., (...), Larsson, S.H. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis (Open Access) (2020) Journal of Environmental Chemical Engineering, 8 (6), art. no. 104506. Cited 49 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104506
dc.relationda Costa Amaral, S., Roux, D., Caton, F., Rinaudo, M., Barbieri, S.F., Meira Silveira, J.L. Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits (2021) Food Hydrocolloids, 121, art. no. 106845. https://www.journals.elsevier.com/food-hydrocolloids doi: 10.1016/j.foodhyd.2021.106845
dc.relationDangwang Dikdim, J.M., Gong, Y., Noumi, G.B., Sieliechi, J.M., Zhao, X., Ma, N., Yang, M., (...), Tchatchueng, J.B. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation (2019) Chemosphere, 217, pp. 833-842. Cited 58 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2018.10.177
dc.relationde Albuquerque, F.P., de Oliveira, J.L., Moschini-Carlos, V., Fraceto, L.F. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology (2020) Science of the Total Environment, 700, art. no. 134868. Cited 48 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2019.134868
dc.relationde Lima, A.S., Maia, D.V., Haubert, L., Oliveira, T.L., Fiorentini, Â.M., Rombaldi, C.V., da Silva, W.P. Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus (Open Access) (2020) LWT, 119, art. no. 108884. Cited 6 times. http://www.elsevier.com/inca/publications/store/6/2/2/9/1/0/index.htt doi: 10.1016/j.lwt.2019.108884
dc.relationde Paiva, P.P., Delcorso, M.C., Matheus, V.A., do Nascimento de Queiroz, S.C., Collares-Buzato, C.B., Arana, S. Acute toxicity of commercial atrazine in Piaractus mesopotamicus: Histopathological, ultrastructural, molecular, and genotoxic evaluation (Open Access) (2017) Veterinary World, 10 (9), art. no. 1008-1019. Cited 13 times. http://www.veterinaryworld.org/Vol.10/September-2017/1.pdf doi: 10.14202/vetworld.2017.1008-1019
dc.relationDing, X., Wang, S., Shen, W., Mu, Y., Wang, L., Chen, H., Zhang, L. Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism (2017) Water Research, 112, pp. 9-18. Cited 61 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2017.01.024
dc.relationDionne, E., Hanson, M.L., Anderson, J.C., Brain, R.A. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses (2021) Science of the Total Environment, Part 2 755, art. no. 142589. Cited 9 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2020.142589
dc.relationdos Santos Pereira, E., Vinholes, J., C. Franzon, R., Dalmazo, G., Vizzotto, M., Nora, L. Psidium cattleianum fruits: A review on its composition and bioactivity (Open Access) (2018) Food Chemistry, 258, pp. 95-103. Cited 29 times. www.elsevier.com/locate/foodchem doi: 10.1016/j.foodchem.2018.03.024
dc.relationDutournié, P., Bruneau, M., Brendlé, J., Limousy, L., Pluchon, S. Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest (Open Access) (2019) Comptes Rendus Chimie, 22 (2-3), pp. 250-257. Cited 3 times.http://www.elsevier.com/journals/comptes-rendus-chimie/1631-0748 doi: 10.1016/j.crci.2018.10.008
dc.relationFranco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species (2021) Journal of Environmental Chemical Engineering, 9 (5), art. no. 105927. Cited 15 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105927
dc.relationFrancolino, B.Y., Valdes, Y., de Luna, C.A., de França, F.J.L., Moens, T., dos Santos, G.A.P. Short-term lethal and sublethal atrazine effects on Litoditis marina: towards a nematode model for marine toxicity assessment? (Open Access) (2021) Ecological Indicators, 126, art. no. 107642. Cited 2 times. http://www.elsevier.com/locate/ecolind doi: 10.1016/j.ecolind.2021.107642
dc.relationFreundlich, H. Über die Adsorption in Lösungen (1907) Z. Phys. Chem., 57U. Cited 13452 times.
dc.relationFu, K., Yue, Q., Gao, B., Wang, Y., Li, Q. Activated carbon from tomato stem by chemical activation with FeCl2 (2017) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, pp. 842-849. Cited 59 times. www.elsevier.com/locate/colsurfa doi: 10.1016/j.colsurfa.2017.06.064
dc.relationGao, Y., Jiang, Z., Li, J., Xie, W., Jiang, Q., Bi, M., Zhang, Y. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust (2019) Environmental Research, 172, pp. 561-568. Cited 37 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/2/1/index.htt doi: 10.1016/j.envres.2019.03.010
dc.relationGeorgin, J., Franco, D., Drumm, F.C., Grassi, P., Netto, M.S., Allasia, D., Dotto, G.L. Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions (2020) Powder Technology, 364, pp. 584-592. Cited 28 times. www.elsevier.com/locate/powtec doi: 10.1016/j.powtec.2020.01.064
dc.relationGeorgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins (2021) Environmental Science and Pollution Research, 28 (27), pp. 36453-36463. Cited 4 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-021-12813-0
dc.relationGeorgin, J., De O. Salomón, Y.L., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Perondi, D., Silva, L.F.O., (...), Dotto, G.L. Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen (Open Access) (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105676. Cited 21 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105676
dc.relationGómez-Avilés, A., Peñas-Garzón, M., Belver, C., Rodriguez, J.J., Bedia, J. Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin (Open Access) (2022) Separation and Purification Technology, 278, art. no. 119654. Cited 6 times. http://www.journals.elsevier.com/separation-and-purification-technology/ doi: 10.1016/j.seppur.2021.119654
dc.relationGrundgeiger, E., Lim, Y.H., Frost, R.L., Ayoko, G.A., Xi, Y. Application of organo-beidellites for the adsorption of atrazine (Open Access) (2015) Applied Clay Science, 105-106, pp. 252-258. Cited 28 times. http://www.elsevier.com/inca/publications/store/5/0/3/3/2/2/index.htt doi: 10.1016/j.clay.2015.01.003
dc.relationHo, Y.S., McKay, G. Sorption of dye from aqueous solution by peat (1998) Chemical Engineering Journal, 70 (2), pp. 115-124. Cited 3200 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/S1385-8947(98)00076-X
dc.relationHo, Y.S., McKay, G. Pseudo-second order model for sorption processes (1999) Process Biochemistry, 34 (5), pp. 451-465. Cited 12391 times. doi: 10.1016/S0032-9592(98)00112-5
dc.relationHu, N., Xu, Y., Sun, C., Zhu, L., Sun, S., Zhao, Y., Hu, C. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity (Open Access) (2021) Ecotoxicology and Environmental Safety, 207, art. no. 111546. Cited 7 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/1/9/index.htt doi: 10.1016/j.ecoenv.2020.111546
dc.relationHuang, Y., Han, C., Liu, Y., Nadagouda, M.N., Machala, L., O'Shea, K.E., Sharma, V.K., (...), Dionysiou, D.D. Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4[rad]− (2018) Applied Catalysis B: Environmental, 221, pp. 380-392. Cited 143 times. www.elsevier.com/inca/publications/store/5/2/3/0/6/6/index.htt doi: 10.1016/j.apcatb.2017.09.001
dc.relationIrandost, M., Akbarzadeh, R., Pirsaheb, M., Asadi, A., Mohammadi, P., Sillanpää, M. Fabrication of highly visible active N, S co-doped TiO2@MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: Mechanisms, modeling and degradation pathway (2019) Journal of Molecular Liquids, 291, art. no. 111342. Cited 41 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2019.111342
dc.relationJamil, T.S., Gad-Allah, T.A., Ibrahim, H.S., Saleh, T.S.Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin (2011) Solid State Sciences, 13 (1), pp. 198-203. Cited 48 times. doi:10.1016/j.solidstatesciences.2010.11.014
dc.relationKerkhoff, C.M., Boit Martinello, K.D., Franco, D.S.P., Netto, M.S., Georgin, J., Foletto, E.L., Piccilli, D.G.A., (...), Dotto, G.L. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp (Open Access) (2021) Journal of Molecular Liquids, 339, art. no. 117184. Cited 13 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117184
dc.relationKhan, S.H., Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review (2020) Environmental Nanotechnology, Monitoring and Management, 13, art. no. 100290. Cited 62 times. http://www.journals.elsevier.com/environmental-nanotechnology-monitoring-and-management/ doi: 10.1016/j.enmm.2020.100290
dc.relationKomtchou, S., Dirany, A., Drogui, P., Robert, D., Lafrance, P. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes (Open Access) (2017) Water Research, 125, pp. 91-103. Cited 85 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2017.08.036
dc.relationKowalska, K., Maniakova, G., Carotenuto, M., Sacco, O., Vaiano, V., Lofrano, G., Rizzo, L. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes (2020) Chemosphere, 238, art. no. 124665. Cited 26 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2019.124665
dc.relationLagergren, S.Y. Zur Theorie der sogenannten Adsorption (1898)
dc.relationangmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum (Open Access) (1918) Journal of the American Chemical Society, 40 (9), pp. 1361-1403. Cited 16178 times. doi: 10.1021/ja02242a004
dc.relationLi, X., Liu, X., Lin, C., Zhang, H., Zhou, Z., Fan, G., Ma, J. Cobalt ferrite nanoparticles supported on drinking water treatment residuals: An efficient magnetic heterogeneous catalyst to activate peroxymonosulfate for the degradation of atrazine (2019) Chemical Engineering Journal, 367, pp. 208-218. Cited 81 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.02.151
dc.relationLima, D.R., Hosseini-Bandegharaei, A., Thue, P.S., Lima, E.C., de Albuquerque, Y.R.T., dos Reis, G.S., Umpierres, C.S., (...), Tran, H.N. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells (2019) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, art. no. 123966. Cited 76 times. www.elsevier.com/locate/colsurfa doi: 10.1016/j.colsurfa.2019.123966
dc.relationLima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption (2019) Journal of Molecular Liquids, 273, pp. 425-434. Cited 622 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2018.10.048
dc.relationLima, D.R., Lima, E.C., Thue, P.S., Dias, S.L.P., Machado, F.M., Seliem, M.K., Sher, F., (...), Rinklebe, J. Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar (2021) Journal of Environmental Chemical Engineering, 9 (5), art. no. 105865. Cited 10 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105865
dc.relationLima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment (2021) Green Technologies for the Defluoridation of Water, pp. 41-88. Cited 12 times. https://www.sciencedirect.com/book/9780323857680 ISBN: 978-032385768-0 doi: 10.1016/B978-0-323-85768-0.00004-X
dc.relationLima, E.C., Sher, F., Guleria, A., Saeb, M.R., Anastopoulos, I., Tran, H.N., Hosseini-Bandegharaei, A. Is one performing the treatment data of adsorption kinetics correctly? (2021) Journal of Environmental Chemical Engineering, 9 (2), art. no. 104813. Cited 53 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104813
dc.relationLiu, Y., Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics (2008) Separation and Purification Technology, 61 (3), pp. 229-242. Cited 831 times. doi: 10.1016/j.seppur.2007.10.002
dc.relationLiu, Y., Shen, L. A general rate law equation for biosorption (2008) Biochemical Engineering Journal, 38 (3), pp. 390-394. Cited 82 times. doi: 10.1016/j.bej.2007.08.003
dc.relationLiu, Y., Xu, H., Yang, S.-F., Tay, J.-H. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules (2003) Journal of Biotechnology, 102 (3), pp. 233-239. Cited 152 times. www.elsevier.com/locate/jbiotec doi: 10.1016/S0168-1656(03)00030-0
dc.relationLiu, N., Charrua, A.B., Weng, C.-H., Yuan, X., Ding, F. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study (2015) Bioresource Technology, 198, pp. 55-62. Cited 159 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2015.08.129
dc.relationLütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption (2019) Journal of Environmental Chemical Engineering, 7 (5), art. no. 103396. Cited 88 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2019.103396
dc.relationMacHado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L. Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars (Open Access) (2020) Journal of Environmental Chemical Engineering, 8 (6), art. no. 104473. Cited 24 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104473
dc.relationMahlalela, L.C., Casado, C., Marugán, J., Septien, S., Ndlovu, T., Dlamini, L.N. Coupling biological and photocatalytic treatment of atrazine and tebuthiuron in aqueous solution (2021) Journal of Water Process Engineering, 40, art. no. 101918. Cited 2 times. http://www.journals.elsevier.com/journal-of-water-process-engineering/ doi: 10.1016/j.jwpe.2021.101918
dc.relationMaletić, M., Vukčević, M., Kalijadis, A., Janković-Častvan, I., Dapčević, A., Laušević, Z., Laušević, M. Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants (Open Access) (2019) Arabian Journal of Chemistry, 12 (8), pp. 4388-4397. Cited 24 times. http://colleges.ksu.edu.sa/Arabic%20Colleges/CollegeOfScience/ChemicalDept/AJC/default.aspx (ScienceDirect http://www.sciencedirect.com/science/journal/18785352) doi: 10.1016/j.arabjc.2016.06.020
dc.relationMarrakchi, F., Fazeli Zafar, F., Wei, M., Wang, S. Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution (2021) Bioresource Technology, 331, art. no. 125046. Cited 18 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2021.125046
dc.relationMcBeath, S.T., Graham, N.J.D. Simultaneous electrochemical oxidation and ferrate generation for the treatment of atrazine: A novel process for water treatment applications (Open Access) (2021) Journal of Hazardous Materials, 411, art. no. 125167. Cited 14 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2021.125167
dc.relationMedhat, A., El-Maghrabi, H.H., Abdelghany, A., Abdel Menem, N.M., Raynaud, P., Moustafa, Y.M., Elsayed, M.A., (...), Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption (Open Access) (2021) Applied Surface Science Advances, 3, art. no. 100037. Cited 26 times. www.journals.elsevier.com/applied-surface-science-advances/ doi: 10.1016/j.apsadv.2020.100037
dc.relationMoussavi, G., Alahabadi, A., Yaghmaeian, K., Eskandari, M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water (2013) Chemical Engineering Journal, 217, pp. 119-128. Cited 213 times. doi: 10.1016/j.cej.2012.11.069
dc.relationMuthusaravanan, S., Balasubramani, K., Suresh, R., Ganesh, R.S., Sivarajasekar, N., Arul, H., Rambabu, K., (...), Banat, F. Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations (2021) Environmental Research, 200, art. no. 111428. Cited 6 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/2/1/index.htt doi: 10.1016/j.envres.2021.111428
dc.relationNaganathan, K.K., Faizal, A.N.M., Zaini, M.A.A., Ali, A. Adsorptive removal of Bisphenol a from aqueous solution using activated carbon from coffee residue (2020) Materials Today: Proceedings, Part 6 47, pp. 1307-1312. Cited 4 times. http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2021.02.802
dc.relationNagarajan, D., Varada, O.M., Venkatanarasimhan, S. Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine (2020) Materials Today: Proceedings, Part 3 47, pp. 790-799. Cited 9 times. http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2020.08.071
dc.relationPereira, E.D.S., Vinholes, J.R., Camargo, T.M., Nora, F.R., Crizel, R.L., Chaves, F., Nora, L., (...), Vizzotto, M. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase (2020) Food Bioscience, 37, art. no. 100665. Cited 8 times http://www.journals.elsevier.com/food-bioscience/ doi: 10.1016/j.fbio.2020.100665
dc.relationRibeiro, A.B., Chisté, R.C., Freitas, M., Da Silva, A.F., Visentainer, J.V., Fernandes, E. Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species (2014) Food Chemistry, 165, pp. 140-148. Cited 49 times. www.elsevier.com/locate/foodchem doi: 10.1016/j.foodchem.2014.05.079
dc.relationSalomón, Y.L.D.O., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Oliveira, L.F.S., (...), Dotto, G.L. High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) (2021) Journal of Environmental Chemical Engineering, 9 (1), art. no. 104911. Cited 33 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104911
dc.relationSiddique, A., Nayak, A.K., Singh, J. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively (2020) Groundwater for Sustainable Development, 10, art. no. 100339. Cited 23 times. http://www.journals.elsevier.com/groundwater-for-sustainable-development/ doi: 10.1016/j.gsd.2020.100339
dc.relationSingh, N.B., Nagpal, G., Agrawal, S., Rachna Water purification by using Adsorbents: A Review (2018) Environmental Technology and Innovation, 11, pp. 187-240. Cited 377 times. http://www.journals.elsevier.com/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2018.05.006
dc.relationSivarajasekar, N., Balasubramani, K., Mohanraj, N., Prakash Maran, J., Sivamani, S., Ajmal Koya, P., Karthik, V. Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: Statistical optimization, process design and breakthrough modeling (2017) Journal of Molecular Liquids, 241, pp. 823-830. Cited 37 times. doi: 10.1016/j.molliq.2017.06.064
dc.relationSoliman, F.M., Fathy, M.M., Salama, M.M., Saber, F.R. Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves (2016) Bull. Fac. Pharm. Cairo Univ., 54, pp. 219-225. Cited 24 times.
dc.relationSpaltro, A., Pila, M.N., Colasurdo, D.D., Noseda Grau, E., Román, G., Simonetti, S., Ruiz, D.L. Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study (2021) Journal of Contaminant Hydrology, 236, art. no. 103739. Cited 14 times. www.elsevier.com/locate/jconhyd doi: 10.1016/j.jconhyd.2020.103739
dc.relationSpessato, L., Bedin, K.C., Cazetta, A.L., Souza, I.P.A.F., Duarte, V.A., Crespo, L.H.S., Silva, M.C., (...), Almeida, V.C. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles (2019) Journal of Hazardous Materials, 371, pp. 499-505. Cited 99 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2019.02.102
dc.relationSuo, F., You, X., Ma, Y., Li, Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism (2019) Chemosphere, 235, pp. 918-925. Cited 87 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2019.06.158
dc.relationTang, W.-W., Zeng, G.-M., Gong, J.-L., Liu, Y., Wang, X.-Y., Liu, Y.-Y., Liu, Z.-F., (...), Tu, D.-Z. Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube (2012) Chemical Engineering Journal, 211-212, pp. 470-478. Cited 238 times. doi: 10.1016/j.cej.2012.09.102
dc.relationTang, Y., Luo, S., Teng, Y., Liu, C., Xu, X., Zhang, X., Chen, L. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays (2012) Journal of Hazardous Materials, 241-242, pp. 323-330. Cited 115 times. doi: 10.1016/j.jhazmat.2012.09.050
dc.relationThommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure and Applied Chemistry, 87 (9-10), pp. 1051-1069. Cited 7533 times. http://www.degruyter.com/view/j/pac doi: 10.1515/pac-2014-1117
dc.relationThue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., (...), Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol (2020) Journal of Hazardous Materials, 398, art. no. 122903. Cited 44 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.122903
dc.relationTripathi et al., 2021 P. Tripathi, R. Yadav, P. Das, A. Singh, R.P. Singh, P. Kandasamy, A. Kalra, P. Khare Endophytic bacterium CIMAP-A7 mediated amelioration of atrazine induced phyto-toxicity in Andrographis paniculata Environ. Pollut., 287 (2021), Article 117635, 10.1016/j.envpol.2021.117635
dc.relationUmpierres et al., 2018 C.S. Umpierres, P.S. Thue, E.C. Lima, G.S. do Reis, I.A.S. de Brum, W.S. d. Alencar, S.L.P. Dias, G.L. Dotto Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions Environ. Technol. (United Kingdom), 39 (2018), pp. 1173-1187, 10.1080/09593330.2017.1323957
dc.relationUreña-Amate et al., 2005 M.D. Ureña-Amate, M. Socías-Viciana, E. González-Pradas, M. Saifi Effects of ionic strength and temperature on adsorption of atrazine by a heat treated kerolite Chemosphere, 59 (2005), pp. 69-74, 10.1016/j.chemosphere.2004.09.098
dc.relationVinholes et al., 2017 J. Vinholes, G. Lemos, R. Lia Barbieri, R.C. Franzon, M. Vizzotto In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga Food Biosci., 19 (2017), pp. 92-100, 10.1016/j.fbio.2017.06.005
dc.relationXu et al., 2018 Z. Xu, T. Zhang, Z. Yuan, D. Zhang, Z. Sun, Y.X. Huang, W. Chen, D. Tian, H. Deng, Y. Zhou Fabrication of cotton textile waste-based magnetic activated carbon using FeCl3 activation by the Box-Behnken design: optimization and characteristics RSC Adv., 8 (2018), pp. 38081-38090, 10.1039/c8ra06253f
dc.relationXu et al., 2019 Z. Xu, Z. Sun, Y. Zhou, W. Chen, T. Zhang, Y. Huang, D. Zhang Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation Colloids Surfaces A Physicochem. Eng. Asp., 582 (2019), Article 123934, 10.1016/j.colsurfa.2019.123934
dc.relationYagmur et al., 2020 E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2 Fuel, 267 (2020), Article 117232, 10.1016/j.fuel.2020.117232
dc.relationYang et al., 2015 B.Y. Yang, Y. Cao, F.F. Qi, X.Q. Li, Q. Xu Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics Nanoscale Res. Lett., 10 (2015), 10.1186/s11671-015-0903-6
dc.relationYang et al., 2018 Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang Comparative study of glyphosate removal on goethite and magnetite: adsorption and photo-degradation Chem. Eng. J., 352 (2018), pp. 581-589, 10.1016/j.cej.2018.07.058
dc.relationYu et al., 2020 Y. Yu, Q. An, L. Jin, N. Luo, Z. Li, J. Jiang Unraveling sorption of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application Bioresour. Technol., 297 (2020), 10.1016/j.biortech.2019.122466
dc.relationZandoná et al., 2020 G.P. Zandoná, L. Bagatini, N. Woloszyn, J. de Souza Cardoso, J.F. Hoffmann, L.S. Moroni, F.M. Stefanello, A. Junges, C.V. Rombaldi Extraction and characterization of phytochemical compounds from araçazeiro (Psidium cattleianum) leaf: putative antioxidant and antimicrobial properties Food Res. Int., 137 (2020), Article 109573, 10.1016/j.foodres.2020.109573
dc.relationZhang et al., 2018 Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions Appl. Surf. Sci., 427 (2018), pp. 147-155, 10.1016/j.apsusc.2017.07.237
dc.relationZhang et al., 2021 X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu, Z. Chen Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption Bioresour. Technol., 320 (2021), Article 124264, 10.1016/j.biortech.2020.124264
dc.relation78
dc.relation67
dc.relation180
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0263876222000521
dc.subjectAdsorption
dc.subjectAtrazine
dc.subjectActivated carbon
dc.subjectAdsorption thermodynamics
dc.subjectBiomass-based adsorbent
dc.titleApplication of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución