dc.creatorDıaz, Stiven
dc.creatorLizama, Carlos
dc.creatorÁlvarez, Edgardo
dc.date2022-06-21T15:33:52Z
dc.date2023-01-30
dc.date2022-06-21T15:33:52Z
dc.date2022-01-30
dc.date.accessioned2023-10-03T19:11:02Z
dc.date.available2023-10-03T19:11:02Z
dc.identifierAlvarez, E., Díaz, S. & Lizama, C. Existence of (N,λ)-Periodic Solutions for Abstract Fractional Difference Equations. Mediterr. J. Math. 19, 47 (2022). https://doi.org/10.1007/s00009-021-01964-6
dc.identifier1660-5446
dc.identifierhttps://hdl.handle.net/11323/9272
dc.identifierhttps://doi.org/10.1007/s00009-021-01964-6
dc.identifier10.1007/s00009-021-01964-6
dc.identifier1660-5454
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168615
dc.descriptionWe establish sufficient conditions for the existence and uniqueness of (N,λ)-periodic solutions for the following abstract model: Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z, where 0 < α ≤ 1, A is a closed linear operator defined in a Banach space X, Δα denotes the fractional difference operator in the Weyl-like sense, and f satisfies appropriate conditions.
dc.format15 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherBirkhauser Verlag Basel
dc.publisherSwitzerland
dc.relationMediterranean Journal of Mathematics
dc.relation[1] Abadias, L., Miana, P.: A subordination principle on Wright functions and regularized resolvent families. J. Funct. Spaces 2314–889 (2015)
dc.relation[2] Abadias, L., Lizama, C.: Almost automorphic mild solutions to fractional partial difference–differential equations. Appl. Anal. 95(6), 1347–1369 (2016)
dc.relation[3] Abadias, L., Lizama, C., Miana, P.J., Velasco, M.P.: Ces´aro sums and algebra homomorphisms of bounded operators. Israel J. Math. 216(1), 471–505 (2016)
dc.relation[4] Abdeljawad, T., Banerjee, S., Wu, G.C.: Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption. Optik. 218, 163698 (2020)
dc.relation[5] Agaoglou, M., Feˇckan, M., Panagiotidou, A.: Existence and uniqueness of (ω, c)-periodic solutions of semilinear evolution equations. Int. J. Dyn. Syst. Differ. Equ. 10(2), 149–166 (2020)
dc.relation[6] Alvarez, E., D´ıaz, S., Lizama, C.: On the existence and uniqueness of (N,λ)- periodic solutions to a class of Volterra difference equations. Adv. Differ. Equ. 105 (2019)
dc.relation[7] E. Alvarez, S. D´ıaz, C. Lizama. C-Semigroups, subordination principle and the L´evy α-stable distribution on discrete time. Commun. Contemp. Math. (to appear) https://doi.org/10.1142/S0219199720500637
dc.relation[8] Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 2019, 106 (2019). https:// doi.org/10.1186/s13661-019-1217-x
dc.relation[9] Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-asymptotically periodic functions, first-oerder Cauchy problem, and Lasota–Wazewska model with unbounded oscillating production of red cells. Math. Method. Appl. Sci. 43(1), 305–319 (2020)
dc.relation[10] Alvarez, E., G´omez, A., Pinto, M.: (ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations. Electr. J. Qual. Th. Diff. Equ. 16, 1–8 (2018)
dc.relation[11] Goodrich, C., Lizama, C.: A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Isr. J. Math. 236, 533–589 (2020)
dc.relation[12] He, J.W., Lizama, C., Zhou, Y.: The Cauchy problem for discrete-time fractional evolution equations. J. Comput. Appl. Math. 370, 112683 (2020)
dc.relation[13] Huang, L.L., Park, J.H., Wu, G.C., Mo, Z.W.: Variable-order fractional discrete-time recurrent neural networks. J. Comp. Appl. Math. 370, 112633 (2020)
dc.relation[14] Huang, L.L., Wu, G.C., Baleanu, D., Wang, H.Y.: Discrete fractional calculus for interval-valued systems. Fuzzy Sets Syst. 404, 141–158 (2021)
dc.relation[15] Khalladi, M., Kosti´c, M., Rahmani, A., Velinov D.: (ω, c)-almost periodic type functions and applications. (2020) hal.archives-ouvertes.fr
dc.relation[16] Khalladi, M., Rahmani, A.: (ω, c)-Pseudo almost periodic distributions. Nonauton. Dyn. Syst. 7(1) (2020)
dc.relation[17] Kosti´c, M.: Multidimensional (ω, c)- almost periodic type functions and applications. hal.archives-ouvertes.fr
dc.relation[18] Kosti´c, M., Fedorov, V.E.: Asymptotically (ω, c)-almost periodic type solutions of abstract degenerate non-scalar Volterra equations. Chelyabinsk Phys. Math. J. 5(4), 415–427 (2020)
dc.relation[19] Liu, K., Wang, J., O’Regan, D., Feˇckan, M.: A new class of (ω, c)-periodic non-instantaneous impulsive differential equations. Mediterr. J. Math. 17, 155 (2020)
dc.relation[20] Lizama, C.: p-maximal regularity for fractional difference equations on UMD spaces. Math. Nach. 288(17/18), 2079–2092 (2015)
dc.relation[21] Lizama, C.: The Poisson distribution, abstract fractional difference equations, and stability. Proc. Am. Math. Soc. 145(9), 3809–3827 (2017)
dc.relation[22] Lizama, C., Murillo, M.: Maximal regularity in lp spaces for discrete time fractional shifted equations. J. Differ. Equ. 263(6), 3175–3196 (2017)
dc.relation[23] Lizama, C., Ponce, R.: Solutions of abstract integro–differential equations via Poisson transformation. Math. Method Appl. Sci. 44(3), 2495–2505 (2021)
dc.relation[24] Lizama, C., Velasco, M.P.: Weighted bounded solutions for a class of nonlinear fractional equations. Fract. Calc. Appl. Anal. 19(4), 1010–1030 (2016)
dc.relation[25] Lunardi. A.: Analytic semigroups and optimal regularity in parabolic problems. PNLDE, vol 16. Birkh¨auser Verlag, Basel (1995)
dc.relation[26] Mophou, G., N’Gu´er´ekata, G.: An existence result of (ω, c)-periodic mild solutions to some fractional differential equation. hal.archives-ouvertes.fr
dc.relation[27] Mozyrska, D., Wyrwas, M.: The Z-transform method and delta type fractional difference operators, Disc. Dyn. Nat. Soc. Art. ID 852734, 12, 1026-1226 (2015). https://doi.org/10.1155/2015/852734
dc.relation[28] Podlubny, I.: Fractional Differential Equations, Vol. 198, Academic Press, 340 (1999)
dc.relation[29] Prudnikov, A.P., Brychkov, A.Y., Marichev, O.I.: Integrals and Series. Elementary Functions, vol. 1. Gordon and Breach Science Publishers, New York (1986)
dc.relation[30] Wang, J., Ren, L., Zhou, Y.: (ω, c)-periodic solutions for time varying impulsive differential equations. Adv. Differ. Equ. 259 (2019)
dc.relation[31] Wu, G.C., Baleanu, D., Bai, Y.R.: Discrete fractional masks and their applications to image enhancement. Appl. Eng. Life Soc. Sci. Part B, 261–270 (2019)
dc.relation[32] Wu, G.C., Baleanu, D., Luo, W.H.: Lyapunov functions for Riemann–Liouvillelike fractional difference equations. Appl. Math. Comp. 314, 228–236 (2017)
dc.relation[33] Zygmund, A.: Trigonometric Series, vol. I, 2nd edn. Cambridge University Press, New York (1959)
dc.relation15
dc.relation1
dc.relation47
dc.relation19
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rights© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s00009-021-01964-6#citeas
dc.subject(N,λ)-periodic solutions
dc.subjectBanach space
dc.subjectFractional difference operator
dc.subjectSubordination
dc.titleExistence of (N, λ)-periodic solutions for sbstract fractional difference equations
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución