dc.creator | Dıaz, Stiven | |
dc.creator | Lizama, Carlos | |
dc.creator | Álvarez, Edgardo | |
dc.date | 2022-06-21T15:33:52Z | |
dc.date | 2023-01-30 | |
dc.date | 2022-06-21T15:33:52Z | |
dc.date | 2022-01-30 | |
dc.date.accessioned | 2023-10-03T19:11:02Z | |
dc.date.available | 2023-10-03T19:11:02Z | |
dc.identifier | Alvarez, E., Díaz, S. & Lizama, C. Existence of (N,λ)-Periodic Solutions for Abstract Fractional Difference Equations. Mediterr. J. Math. 19, 47 (2022). https://doi.org/10.1007/s00009-021-01964-6 | |
dc.identifier | 1660-5446 | |
dc.identifier | https://hdl.handle.net/11323/9272 | |
dc.identifier | https://doi.org/10.1007/s00009-021-01964-6 | |
dc.identifier | 10.1007/s00009-021-01964-6 | |
dc.identifier | 1660-5454 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168615 | |
dc.description | We establish sufficient conditions for the existence and uniqueness of (N,λ)-periodic solutions for the following abstract model:
Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z,
where 0 < α ≤ 1, A is a closed linear operator defined in a Banach space
X, Δα denotes the fractional difference operator in the Weyl-like sense,
and f satisfies appropriate conditions. | |
dc.format | 15 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Birkhauser Verlag Basel | |
dc.publisher | Switzerland | |
dc.relation | Mediterranean Journal of Mathematics | |
dc.relation | [1] Abadias, L., Miana, P.: A subordination principle on Wright functions and
regularized resolvent families. J. Funct. Spaces 2314–889 (2015) | |
dc.relation | [2] Abadias, L., Lizama, C.: Almost automorphic mild solutions to fractional partial difference–differential equations. Appl. Anal. 95(6), 1347–1369 (2016) | |
dc.relation | [3] Abadias, L., Lizama, C., Miana, P.J., Velasco, M.P.: Ces´aro sums and algebra
homomorphisms of bounded operators. Israel J. Math. 216(1), 471–505 (2016) | |
dc.relation | [4] Abdeljawad, T., Banerjee, S., Wu, G.C.: Discrete tempered fractional calculus
for new chaotic systems with short memory and image encryption. Optik. 218,
163698 (2020) | |
dc.relation | [5] Agaoglou, M., Feˇckan, M., Panagiotidou, A.: Existence and uniqueness of
(ω, c)-periodic solutions of semilinear evolution equations. Int. J. Dyn. Syst.
Differ. Equ. 10(2), 149–166 (2020) | |
dc.relation | [6] Alvarez, E., D´ıaz, S., Lizama, C.: On the existence and uniqueness of (N,λ)-
periodic solutions to a class of Volterra difference equations. Adv. Differ. Equ.
105 (2019) | |
dc.relation | [7] E. Alvarez, S. D´ıaz, C. Lizama. C-Semigroups, subordination principle and
the L´evy α-stable distribution on discrete time. Commun. Contemp. Math. (to
appear) https://doi.org/10.1142/S0219199720500637 | |
dc.relation | [8] Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-pseudo periodic functions, first order
Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 2019, 106 (2019). https://
doi.org/10.1186/s13661-019-1217-x | |
dc.relation | [9] Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-asymptotically periodic functions,
first-oerder Cauchy problem, and Lasota–Wazewska model with unbounded
oscillating production of red cells. Math. Method. Appl. Sci. 43(1), 305–319
(2020) | |
dc.relation | [10] Alvarez, E., G´omez, A., Pinto, M.: (ω, c)-periodic functions and mild solutions
to abstract fractional integro-differential equations. Electr. J. Qual. Th. Diff.
Equ. 16, 1–8 (2018) | |
dc.relation | [11] Goodrich, C., Lizama, C.: A transference principle for nonlocal operators using
a convolutional approach: fractional monotonicity and convexity. Isr. J. Math.
236, 533–589 (2020) | |
dc.relation | [12] He, J.W., Lizama, C., Zhou, Y.: The Cauchy problem for discrete-time fractional evolution equations. J. Comput. Appl. Math. 370, 112683 (2020) | |
dc.relation | [13] Huang, L.L., Park, J.H., Wu, G.C., Mo, Z.W.: Variable-order fractional
discrete-time recurrent neural networks. J. Comp. Appl. Math. 370, 112633
(2020) | |
dc.relation | [14] Huang, L.L., Wu, G.C., Baleanu, D., Wang, H.Y.: Discrete fractional calculus
for interval-valued systems. Fuzzy Sets Syst. 404, 141–158 (2021) | |
dc.relation | [15] Khalladi, M., Kosti´c, M., Rahmani, A., Velinov D.: (ω, c)-almost periodic type
functions and applications. (2020) hal.archives-ouvertes.fr | |
dc.relation | [16] Khalladi, M., Rahmani, A.: (ω, c)-Pseudo almost periodic distributions. Nonauton. Dyn. Syst. 7(1) (2020) | |
dc.relation | [17] Kosti´c, M.: Multidimensional (ω, c)- almost periodic type functions and applications. hal.archives-ouvertes.fr | |
dc.relation | [18] Kosti´c, M., Fedorov, V.E.: Asymptotically (ω, c)-almost periodic type solutions
of abstract degenerate non-scalar Volterra equations. Chelyabinsk Phys. Math.
J. 5(4), 415–427 (2020) | |
dc.relation | [19] Liu, K., Wang, J., O’Regan, D., Feˇckan, M.: A new class of (ω, c)-periodic
non-instantaneous impulsive differential equations. Mediterr. J. Math. 17, 155
(2020) | |
dc.relation | [20] Lizama, C.: p-maximal regularity for fractional difference equations on UMD
spaces. Math. Nach. 288(17/18), 2079–2092 (2015) | |
dc.relation | [21] Lizama, C.: The Poisson distribution, abstract fractional difference equations,
and stability. Proc. Am. Math. Soc. 145(9), 3809–3827 (2017) | |
dc.relation | [22] Lizama, C., Murillo, M.: Maximal regularity in lp spaces for discrete time
fractional shifted equations. J. Differ. Equ. 263(6), 3175–3196 (2017) | |
dc.relation | [23] Lizama, C., Ponce, R.: Solutions of abstract integro–differential equations via
Poisson transformation. Math. Method Appl. Sci. 44(3), 2495–2505 (2021) | |
dc.relation | [24] Lizama, C., Velasco, M.P.: Weighted bounded solutions for a class of nonlinear
fractional equations. Fract. Calc. Appl. Anal. 19(4), 1010–1030 (2016) | |
dc.relation | [25] Lunardi. A.: Analytic semigroups and optimal regularity in parabolic problems.
PNLDE, vol 16. Birkh¨auser Verlag, Basel (1995) | |
dc.relation | [26] Mophou, G., N’Gu´er´ekata, G.: An existence result of (ω, c)-periodic mild solutions to some fractional differential equation. hal.archives-ouvertes.fr | |
dc.relation | [27] Mozyrska, D., Wyrwas, M.: The Z-transform method and delta type fractional
difference operators, Disc. Dyn. Nat. Soc. Art. ID 852734, 12, 1026-1226 (2015).
https://doi.org/10.1155/2015/852734 | |
dc.relation | [28] Podlubny, I.: Fractional Differential Equations, Vol. 198, Academic Press, 340
(1999) | |
dc.relation | [29] Prudnikov, A.P., Brychkov, A.Y., Marichev, O.I.: Integrals and Series. Elementary Functions, vol. 1. Gordon and Breach Science Publishers, New York
(1986) | |
dc.relation | [30] Wang, J., Ren, L., Zhou, Y.: (ω, c)-periodic solutions for time varying impulsive
differential equations. Adv. Differ. Equ. 259 (2019) | |
dc.relation | [31] Wu, G.C., Baleanu, D., Bai, Y.R.: Discrete fractional masks and their applications to image enhancement. Appl. Eng. Life Soc. Sci. Part B, 261–270 (2019) | |
dc.relation | [32] Wu, G.C., Baleanu, D., Luo, W.H.: Lyapunov functions for Riemann–Liouvillelike fractional difference equations. Appl. Math. Comp. 314, 228–236 (2017) | |
dc.relation | [33] Zygmund, A.: Trigonometric Series, vol. I, 2nd edn. Cambridge University
Press, New York (1959) | |
dc.relation | 15 | |
dc.relation | 1 | |
dc.relation | 47 | |
dc.relation | 19 | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s00009-021-01964-6#citeas | |
dc.subject | (N,λ)-periodic solutions | |
dc.subject | Banach space | |
dc.subject | Fractional difference operator | |
dc.subject | Subordination | |
dc.title | Existence of (N, λ)-periodic solutions for sbstract fractional difference equations | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |