Evaluación de la dureza superficial del recubrimiento de NiCr mediante el análisis de elementos finitos

dc.creatorFuentes Rueda, Lauren Camila
dc.creatorCampillo Carreño, Diego Andres
dc.creatorCalderón, Luis
dc.creatorMartínez, Manuel Del Jesús
dc.date2023-07-21T21:03:47Z
dc.date2023-07-21T21:03:47Z
dc.date2021
dc.date.accessioned2023-10-03T19:10:57Z
dc.date.available2023-10-03T19:10:57Z
dc.identifierL. Fuentes Rueda, D. Campillo Carreño & L. Calderón Vergel, “ Evaluation of surface hardness of NiCr coating using Finite Elements Analysis”, INGECUC, vol. 17. no. 1, pp. 329–339. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.24
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10335
dc.identifier10.17981/ingecuc.17.1.2021.24
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168604
dc.descriptionIntroduction— To enhance resistance to surface damage of materials due to mechanical actions, there have been created many procedures that allow its modification for different needs. This leads to researches conducted to determine the changes achieved in the properties due to said procedures. One method commonly applied is, for example, physical means of vapor deposition of thin films on a surface. In recent years, many rational and empirical models have been proposed for the study of said properties. One of these models is computational analysis, which allows determining a great number of properties while avoiding applying destructive tests, achieving to reduce experimental time spent and costs of manufacture of test tubes as well as the test itself. In this research, the hardness of a surface coating of Nichrome (NiCr 80-20) was determined with an indentation test modeled in Ansys, based on the finite elements’ method. Objective— To design a computational model that allows determining the surface hardness of material with coating Methodology— The realization of this project was made with the software for engineering analysis ANSYS, and the model was made based on the Vickers Indentation Test regulation given by the ASTM, which states that the test must be done with a pyramidal diamond indenter, applying forces greater than 1 kgf. Results— By running the respective numerical analysis for both the substrate and the coating, a surface hardness of 197.5073 VH was obtained for NiCr coating and surface hardness of 160.5809 VH for the S235 Steel (hardness of the interface). Conclusions— It was determined that the model proposed is correct seeing as the values obtained for the Vickers’ Hardness is approximately the same as the experimental value with an error of 0.7501% for the coating layer and 0.2605% for the substrate. It was also concluded that it is possible to use this same procedure to obtain the surface hardness for different materials than those treated in this article by using this tool.
dc.descriptionIntroducción— Para mejorar la resistencia al daño superficial de los materiales debido a acciones mecánicas, se han creado muchos procedimientos que permiten su modificación para diferentes necesidades. Esto hace que se realicen investigaciones para determinar los cambios logrados en las propiedades debido a dichos procedimientos. Uno de los métodos comúnmente aplicados es, por ejemplo, los medios físicos de deposición de vapor de películas delgadas sobre una superficie. En los últimos años se han propuesto muchos modelos racionales y empíricos para el estudio de dichas propiedades. Uno de estos modelos es el análisis computacional, que permite determinar un gran número de propiedades evitando la aplicación de ensayos destructivos, consiguiendo reducir el tiempo experimental empleado y los costes de fabricación de las probetas, así como el propio ensayo. En esta investigación se determinó la dureza de un recubrimiento superficial de Nichrome (NiCr 80-20) con un ensayo de indentación modelado en Ansys, basado en el método de elementos finitos. Objetivo— Diseñar un modelo computacional que permita determinar la dureza superficial de un material con recubrimiento. Metodología— La realización de este proyecto se hizo con el software de análisis de ingeniería ANSYS, y el modelo se hizo con base en la norma de ensayo de indentación Vickers dada por la ASTM, la cual establece que el ensayo debe hacerse con un indentador de diamante piramidal, aplicando fuerzas mayores a 1 kgf. Resultados— Al ejecutar el respectivo análisis numérico tanto para el sustrato como para el recubrimiento, se obtuvo una dureza superficial de 197.5073 VH para el recubrimiento de NiCr y una dureza superficial de 160,5809 VH para el Acero S235 (dureza de la interfase). Conclusiones— Se determinó que el modelo propuesto es correcto ya que los valores obtenidos para la Dureza Vickers es aproximadamente igual al valor experimental con un error de 0.7501% para la capa de recubrimiento y 0.2605% para el sustrato. También se concluyó que es posible utilizar este mismo procedimiento para obtener la dureza superficial para materiales diferentes a los tratados en este artículo utilizando esta herramienta.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] Eurocode.com, “Table of design material properties for structural steel,” eurocodeapplied.com, [online], 1993. Available: https://www.eurocodeapplied.com/design/en1993/steel-design-properties
dc.relation[2] N. F. Ak, C. Tekmen, I. Ozdemir, H. S. Soykan & E. Celik, “NiCr coatings on stainless steel by HVOF technique,” Surf Coat Technol, vol. 174-175, pp. 1070–1073, Sep. 2003. https://doi.org/10.1016/S0257- 8972(03)00367-0
dc.relation[3] G. Faraji, H. S. Kim, & H. T. Kashi, “Chapter 7 - Mechanical Properties of Ultrafine-Grained and Nanostructured Metals,” in Severe Plastic Deformation, THR, IRN: Elsevier, pp. 223–257, 2018.
dc.relation[4] Z.-Q. Chen, H. Niu, D. Li & Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses,” Intermetallics, vol. 19, no. 9, pp. 1275–1281, Sep. 2011. https://doi.org/10.1016/j.intermet.2011.03.026
dc.relation[5] J. Gong, J. Wu & Z. Guan, “Examination of the indentation size effect in low-load vickers hardness testing of ceramics,” J Eur Ceram Soc, vol. 19, no. 15, pp. 2625–2631, Nov. 1999. https://doi.org/10.1016/ S0955-2219(99)00043-6
dc.relation[6] J. M. Antunes, L. F. Menezes, & J. V. Fernande, “Three-dimensional numerical simulation of Vickers indentation tests,” Inter J Solids Struct, no. 43, pp. 784–806, 2006. https://doi.org/10.1016/j.ijsolstr.2005.02.048
dc.relation[7] A. Harish, “Finite Element Method – What Is It? FEM and FEA Explained”, simscale blog, Oct. 2020. Available: https://www.simscale.com/blog/2016/10/what-is-finite-element-method/
dc.relation[8] J. Zottis, C. A. T. Soares Diehl & A. da S. Roch, “Evaluation of experimentally observed asymmetric distributions of hardness, strain and residual stress in cold drawn bars by FEM-simulation,” J Mater Res Technol, vol. 7, no. 4, pp. 469–478, 2018. https://doi.org/10.1016/j.jmrt.2018.01.004
dc.relation[9] W. Han, K. Kuepper, P. Hou, W. Akram & H. Eickmeier, “Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution,” ChemSusChem, vol. 11, no. 20, pp. 3661–3671,Oct. 2018. https://doi.org/10.1002/cssc.201801351
dc.relation[10] H. Schäfer, K. Küpper, J. Wollshläger, N. Kashavae, J. Hardege, L. Walder, S. M. Beladi-Mousavi, B. Hartmann-Azanza, M. Steinhart, S. Sadaf & F. Dorn, “Oxidized Mild Steel S235: An Efficient Anode for Electrocatalytically Initiated Water Splitting,” ChemSusChem, vol. 8, no. 18, pp. 3099–3110, Sep. 2015. https://doi.org/10.1002/cssc.201500666
dc.relation[11] G. Marot, M. Martínez & J. Lesage, Modelado Computacional de un Ensayo Interfacial de Dos Materiales, 2007.
dc.relation[12] Designation E92-17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM E92, ASTM, 2017. https://doi.org/10.1520/E0092-17
dc.relation[13] D. R. Askenland, Ciencia e Ingeniería de los Materiales, 7 ed, BOS, USA: Cengage Learning, 2016.
dc.relation[14] A. Singh, K. Ramachandra & A. R. Devarhubli, “Evaluation and comparison of shear bond strength o porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study,” J Indian Prosthodont Socv, vol. 17, no. 3, pp. 261–266, 2017. https://doi.org/10.4103/jips.jips_337_16
dc.relation[15] SharcNet, “Ansys (Application),” sharcnet.ca, [online], 2016. Available: https://www.sharcnet.ca/my/ software/show/22
dc.relation339
dc.relation329
dc.relation1
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3249
dc.subjectHardness test
dc.subjectFinite elements
dc.subjectComposite material
dc.subjectCoating
dc.subjectSimulation
dc.subjectEnsayo de dureza
dc.subjectElementos finitos
dc.subjectMaterial compuesto
dc.subjectRecubrimiento
dc.subjectSimulación
dc.titleEvaluation of surface hardness of NiCr coating using finite elements analysis
dc.titleEvaluación de la dureza superficial del recubrimiento de NiCr mediante el análisis de elementos finitos
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución