dc.creator | Hernández Fernández, Joaquín | |
dc.creator | Ortega-Toro, Rodrigo | |
dc.creator | Castro-Suarez, John R. | |
dc.date | 2023-09-11T19:11:48Z | |
dc.date | 2023-09-11T19:11:48Z | |
dc.date | 2023-02-22 | |
dc.date.accessioned | 2023-10-03T19:10:27Z | |
dc.date.available | 2023-10-03T19:10:27Z | |
dc.identifier | Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. https://doi.org/10.3390/ polym15051098 | |
dc.identifier | https://hdl.handle.net/11323/10477 | |
dc.identifier | 10.3390/polym15051098 | |
dc.identifier | 2073-4360 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168539 | |
dc.description | The copolymer synthesis process can be affected by failures in the production process or by contaminating compounds such as ketones, thiols, and gases, among others. These impurities act as an inhibiting agent of the Ziegler–Natta (ZN) catalyst affecting its productivity and disturbing the polymerization reaction. In this work, the effect of formaldehyde, propionaldehyde, and butyraldehyde on the ZN catalyst and the way in which it affects the final properties of the ethylene-propylene copolymer is presented by analyzing 30 samples with different concentrations of the mentioned aldehydes along with three control samples. It was determined that the presence of formaldehyde 26 ppm, propionaldehyde 65.2 ppm, and butyraldehyde 181.2 ppm considerably affect the productivity levels of the ZN catalyst; this effect increases as the concentration of aldehydes is higher in the process; likewise, these impurities affect the properties of the final product, such as the fluidity index (MFI), thermogravimetric analysis (TGA), bending, tension, and impact, which leads to a polymer with low-quality standards and less resistance to breakage. The computational analysis showed that the complexes formed by formaldehyde, propionaldehyde, and butyraldehyde with the active center of the catalyst are more stable than those obtained by the ethylene-Ti and propylene-Ti complexes, presenting values of −40.5, −47.22, −47.5, −5.2 and −1.3 kcal mol−1 respectively | |
dc.format | 15 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | MDPI AG | |
dc.publisher | Switzerland | |
dc.relation | Polymers | |
dc.relation | 1. Fan, D.; Dai, D.J.; Wu, H.S. Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 2012,
6, 101–115. [CrossRef] | |
dc.relation | 2. Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to
Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym.
Environ. 2022, 30, 4800–4808. [CrossRef] | |
dc.relation | 3. Penteado, A.T.; Kim, M.; Godini, H.R.; Esche, E.; Repke, J.U. Biogas as a renewable feedstock for green ethylene production via
oxidative coupling of methane: Preliminary feasibility study. Chem. Eng. Trans. 2017, 61, 589–594. | |
dc.relation | 4. Abril, A.; Navarro, E.A. Etanol a Partir de Biomasa Lignocelulósica; Aleta: Valencia, Spain, 2012; pp. 46–47. | |
dc.relation | 5. Himmelmann, R.; Otterstaetter, R.; Franke, O.; Brand, S.; Wachsen, O.; Mestl, G.; Efenberger, F.; Klemm, E. Selective oxidation of
ethanol to ethylene oxide with a dual-layer concept. Catal. Commun. 2022, 167, 106424. [CrossRef] | |
dc.relation | 6. Hu, Y.S.; Kamdar, A.R.; Ansems, P.; Chum, S.P.; Hiltner, A.; Baer, E. Crystallization of a miscible propylene/ethylene copolymer
blend. Polymer 2006, 47, 6387–6397. [CrossRef] | |
dc.relation | 7. Du, Z.X.; Xu, J.T.; Dong, Q.; Fan, Z.Q. Thermal fractionation and efect of comonomer distribution on the crystal structure of
ethylene-propylene copolymers. Polymer 2009, 50, 2510–2515. [CrossRef] | |
dc.relation | 8. Jermolovicius, L.A.; Pouzada, E.V.S.; Do Nascimento, R.B.; de Castro, E.R.; Senise, J.T.; Mente, B.B.; Martins, M.C.; Yamaguchi,
S.M.; Sanchez, V.C. Greening the green ethylene with microwaves. Chem. Eng. Process 2018, 127, 238–248. [CrossRef] | |
dc.relation | 9. Wang, Z.; Shi, R.; Zhang, T. Three-phase electrochemistry for green ethylene production. Curr. Opin. Electroche. 2021, 30, 100789.
[CrossRef] | |
dc.relation | 10. Fernández, A.; Expósito, M.T.; Peña, B.; Berger, R.; Shu, J.; Graf, R.; Spiess, H.W.; García-Muñoz, R.A. Molecular structure
and local dynamic in impact polypropylene copolymers studied by preparative TREF, solid state NMR spectroscopy, and SFM
microscopy. Polymer 2015, 61, 87–98. [CrossRef] | |
dc.relation | 11. Hernández-Fernández, J.; Marulanda, K.; Puello-Polo, E. A new Valorization Route of Petrochemical Wastewater: Recovery
of Phenolic Derivatives and their Subsequent Application in a PP Matrix for the Im-provement of their Durability in Multiple
Applications. J. Polym. Environ. 2023, 1–10. [CrossRef] | |
dc.relation | 12. Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst
on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef] | |
dc.relation | 13. Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites
According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content.
Macromol. Chem. Phys. 2016, 217, 1384–1395. [CrossRef] | |
dc.relation | 14. Bahri-Laleh, N. Interaction of Different Poisons with MgCl2/TiCl4 Based Ziegler-Natta Catalysts. Appl. Surf. Sci. 2016, 379,
395–401. [CrossRef] | |
dc.relation | 15. Hernández Fernández, J.A. Uso de Aditivos Sostenibles en la Estabilización Térmica del Polipropileno en su Proceso de Síntesis
(Doctoral dissertation, Universitat Politècnica de València). Ph.D. Thesis, Universitat Politècnica de València, Alcoy, España, 2018. | |
dc.relation | 16. Hernández-Fernández, J. Quantifcation of oxygenates, sulphides, thiols and permanent gases in propylene: A multiple linear
regression model to predict the loss of efciency in polypropylene production on an industrial scale. J. Chromatogr. A 2020,
1628, 461478. [CrossRef] | |
dc.relation | 17. Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A. Experimental Study of the Impact of Trace Amounts of Acetylene and
Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.
[CrossRef] | |
dc.relation | 18. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. The Effects of Oxidation States, Spin States and Solvents on Molecular Structure, Stability and Spectroscopic
Properties of Fe-Catechol Complexes: A Theoretical Study. Adv. Chem. Eng. Sci. 2017, 7, 137–153. | |
dc.relation | 19. Ernzerhof, M.; Perdew, J. Generalized gradient approximation to the angleand system-averaged exchange hole. J. Chem. Phys.
1998, 109, 3313. [CrossRef] | |
dc.relation | 20. Schäfer, C.; Ahlrichs, H.R. Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem.
Phys. 1994, 100, 5829–5835. [CrossRef] | |
dc.relation | 21. Correa, A.; Piemontesi, F.; Morini, G.; Cavallo, L. Key elements in the structure and function relationship of the
MgCl2/TiCl4/Lewis base Ziegler-Natta catalytic system. Macromolecules 2007, 40, 9181–9189. [CrossRef] | |
dc.relation | 22. Choudhary, K.D.; Nayyar, A.; Dasgupta, M.S. Effect of Compression Ratio on Combustion and Emission Characteristics of C.I.
Engine Operated with Acetylene in Conjunction with Diesel Fuel. Fuel 2018, 214, 489–496. [CrossRef] | |
dc.relation | 23. Davis, T.E.; Tobias, R.L.; Peterli, E.B. Thermal Degradation of Polypropylene. J. Polym. Sci. 1962, 56, 485–499. [CrossRef] | |
dc.relation | 24. Hernández-Fernández, J.; Rodriguez, E. Dermination of phenolic antioxidants additives in industrial wastewater from polypropylene production using soild phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2010, 1607, 460442.
[CrossRef] | |
dc.relation | 25. Hernández Fernández, J.; Rayon, E.; Lopez, J.; Arrieta, M. Enchancing the termal stability of polypropylene by blending with low
amounts of natural antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef] | |
dc.relation | 26. Hernández Fernández, J.; Lopez Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and
volatile organic compounds in the wastewater treatment plant during the production of industrial scale. Chemosphere 2021,
263, 128027. [CrossRef] | |
dc.relation | 27. Hernández Fernández, J.; Lopez, J. Quantification pf poisons for Ziegler Natta Catalysts and effects on the production of
polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium. J. Chromatogr. A 2020, 1614, 460736. | |
dc.relation | 28. Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia.
Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176.
[CrossRef] | |
dc.relation | 29. Hernández-Fernández, J. Films Base don Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods
2021, 10, 1171. | |
dc.relation | 30. Bonachela, S.; Lopez, J.; Granados, M.; Magan, J.; Hernandez, J.; Baille, A. Effects of gravel mulch on surface energy balance and
soil termal regime in an unheated plastic Greenhouse. Biosyst. Eng. 2020, 192, 1–13. [CrossRef] | |
dc.relation | 31. Hernández-Fernández, J.; Lopez, J. Experimental study of the autocatalytic effect of triethylaluminum and TiCl4 residuals at the
onset of nonadditive polypropylene degradation and their impacto n thermo-oxidative degradation and pyrolysis. J. Anal. Appl.
Pyrolysis 2021, 155, 105052. [CrossRef] | |
dc.relation | 32. Hernández-Fernández, J.; Martinez, J. Autocatalytic influence of different levels of arsin o the termal stability and pyrolysis of
polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. | |
dc.relation | 33. Hernández-Fernández, J.; Lopez Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying part-perbillion levels opf arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable. J. Chromatogr. A 2021,
1637, 461833. [CrossRef] | |
dc.relation | 34. Hernández-Fernández, J. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of polypropylene.
Polymers 2022, 14, 3132. [CrossRef] | |
dc.relation | 35. Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Identification and Quantification of Microplastics in Effluents
of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [CrossRef] | |
dc.relation | 36. Hernández-Fernández, J. Comparative Characterization of gum rosins for their use as sustainable additives in polymeric matrices.
J. Appl. Polym. Sci. 2021, 14, 4920. | |
dc.relation | 37. Hernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in
Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [CrossRef] | |
dc.relation | 38. Chacon, H.; Cano, H.; Hernandez, J.; Guerra, Y.; Puello Polo, E.; Rio Rojas, J.F.; Ruiz, Y. Effect of Addition of polyurea as an
Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [CrossRef] | |
dc.relation | 15 | |
dc.relation | 1 | |
dc.relation | 5 | |
dc.relation | 15 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2073-4360/15/5/1098 | |
dc.subject | Formaldehyde–propionaldehyde and butyraldehyde | |
dc.subject | Green ethylene | |
dc.subject | Ziegler–Natta | |
dc.subject | Polypropylene | |
dc.subject | Catalyst | |
dc.subject | Degradation | |
dc.subject | Random copolymer | |
dc.title | Theoretical–experimental study of the action of trace amounts of formaldehyde, propionaldehyde, and butyraldehyde as inhibitors of the ziegler–natta catalyst and the synthesis of an ethylene–propylene copolymer | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |