Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática

dc.creatorTorresi, Sandra
dc.date2023-05-12T21:54:44Z
dc.date2023-05-12T21:54:44Z
dc.date2020-12-07
dc.date.accessioned2023-10-03T19:10:26Z
dc.date.available2023-10-03T19:10:26Z
dc.identifierTorresi, S. (2020). Interaction between domain-specific and domain-general abilities in math´s competence: Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática. Journal of Applied Cognitive Neuroscience, 1(1), 43–51. https://doi.org/10.17981/JACN.1.1.2020.08
dc.identifierhttps://hdl.handle.net/11323/10116
dc.identifier10.17981/JACN.1.1.2020.08
dc.identifier2745-0031
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168535
dc.descriptionThis article is an approach to some viewpoints about interactions between domain-specific and general cognitive tools involved in the development of mathematical competence. Many studies report positive correlations between the acuity of the numerical approximation system and formal mathematical performance, while another important group of investigations have found no evidence of a direct connection between non-symbolic and symbolic numerical representations. The challenge for future research will be to focus on correlations and possible causalities between non-symbolic and symbolic arithmetic skills and general domain cognitive skills in order to identify stable precursors of mathematical competence.
dc.descriptionEste artículo es una aproximación a diferentes puntos de vista acerca de la interacción entre las habilidades cognitivas de dominio específico y general involucradas en el desarrollo de la competencia matemática. Muchos estudios reportan correlaciones positivas entre la agudeza del sistema de aproximación numérica y el desempeño matemático formal, mientras que otro grupo importante de investigaciones no han hallado evidencias de una conexión directa entre las representaciones numéricas no simbólicas y las simbólicas. El desafío para las futuras investigaciones será focalizar en correlaciones y posibles causalidades entre las habilidades aritméticas no simbólicas, las simbólicas y las habilidades cognitivas de dominio general con el propósito de identificar precursores estables de la competencia matemática.
dc.format9 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationJournal of Applied Cognitive Neuroscience
dc.relationAnobile, G., Cicchini, G. M. & Burr, D. C. (2016). Number as a Primary Perceptual Attribute: A Review. Perception, 45(1-2), 5–31. https://doi.org/10.1177/0301006615602599
dc.relationAshkenazi, S., Mark-Zigdon, N. & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16(1), 35–46. https://doi.org/10.1111/j.1467- 7687.2012.01190.x
dc.relationAllen, K., Higgins, S. & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: a systematic review. Educational Psychology Review, 31, 1–23. https://doi. org/10.1007/s10648-019-09470-8
dc.relationBaddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/annurevpsych-120710-100422
dc.relationBlankenship, T. L., Keith, K., Calkins, S. D. & Bell, M. A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year- old children. Cognitive Development, 45, 141–151, https://doi.org/10.1016/j.cogdev.2017.07.002
dc.relationBonny, J. W. & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. https://doi. org/10.1016/j.jecp.2012.09.015
dc.relationButterworth, B. (2019). Dyscalculia: from Science to Education. New York: Taylor & Francis.
dc.relationBugden, S. & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not the automatic processing of Arabic numerals. Cognition, 118(1), 32–44. https://doi.org/10.1016/j.cognition.2010.09.005
dc.relationCantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), 2912– 2919. https://doi.org/10.1371/journal. pbio.0050328
dc.relationCarey, S. (2009). The Origin of Concepts. New York: Oxford Scholarship. https://doi.org/10.1093/acprof:oso/97801 95367638.001.0001
dc.relationChen, Q. & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. http://doi.org/10.1016/j.actpsy.2014.01.016
dc.relationChu, F. W., vanMarle, K. & Geary, D. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. http://dx.doi.org/10.1016/j.jecp.2015.01.006
dc.relationClark, C. A. C., Nelson, J. M., Garza, J., Sheffield, T. D., Wiebe, S. A. & Espy, K. A. (2014). Gaining control: Changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 1–15. https://doi.org/10.3389/fpsyg.2014.00107
dc.relationClearman, J., Klinger, V. & Szücs, D. (2017). Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 70(9), 1837– 1855. https://doi.org/10.1080/17470218.2016.1209534
dc.relationDehaene, S. (2011). The Number Sense. New York: Oxford University Press.
dc.relationDesoete, A., Ceulemans, A., De Weerdt, F. & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002
dc.relationFanari, R., Meloni, C. & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A Longitudinal Study. Frontiers in Psychology, 10, 1–9. https://doi.org/10.3389/fpsyg.2019.02460
dc.relationFazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. http://doi.org/10.1016/j.jecp.2014.01.013
dc.relationFritz, A., Haase, V. & Räsänen, P. (Eds.) (2019). International Handbook of Mathematical Learning Difficulties. From the Laboratory to the Classroom. Cham: Springer.
dc.relationGeary, D. (2011). Cognitive predictors of achievement growth in mathematics: A five-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510
dc.relationGeary, D., Nicholas, A., Li, Y. & Sun, J. (2017). Development change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159
dc.relationGilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V. & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), 1–9. https://doi.org/10.1371/journal.pone.0067374
dc.relationGoffin, C., Vogel, S. E., Slipenkyj, M. & Ansari, D. (2020). A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study. Human Brain Mapping, 41(6), 1591–1610. https://doi.org/10.1002/hbm.24897
dc.relationHalberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. http:// doi.org/10.1073/pnas.1200196109
dc.relationHellstrand, H., Korhonen, J., Räsänen, P., Linmmanmaku, K. & Aunio, P. (2020). Reliability and validity evidence of the early numeracy test for identifying children at risk for mathematical learning difficulties. International Journal of Educational Research, 102, 1–10. https://doi.org/10.1016/j.ijer.2020.101580
dc.relationHonoré, N. & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166685
dc.relationHornung, C., Schiltz, C., Brunner, M. & Martin, R. (2014). Predicting firstgrade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 1–18 https://doi.org/10.3389/fpsyg.2014.00272
dc.relationIzard, V., Sann, C., Spelke E. S. & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–1038. https://doi.org/10.1073/ pnas.0812142106
dc.relationKuzmina, Y., Tikhomirova, T., Lysenkova, I. & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS ONE, 15(2), 1–23. https://doi.org/10.1371/journal.pone.0228960
dc.relationLeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D. & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x
dc.relationLibertus, M. E., Feigenson, L. & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–300. https://doi.org/10.1111/j.1467-7687.2011.01080.x
dc.relationLibertus, M. E., Odic, D., Feigenson, L. & Halberda, J. (2020). Effects of Visual Training of Approximate Number Sense on Auditory Number Sense and School Math Ability. Frontiers in Psychology, 11, 1–16. https://doi. org/10.3389/fpsyg.2020.02085
dc.relationLindskog, M., Winman, A. & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.00462
dc.relationMammarella, I. C., Caviola, S., Giofrè, D. & Szücs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220–235. https://doi. org/10.1111/bjdp.12202
dc.relationMatejko, A. A. & Ansari, D. (2016). Trajectories of Symbolic and Non-symbolic Magnitude Processing in the First Year of Formal Schooling. PLOS ONE, 11(3), 1–15. http://doi.org/10.1371/journal.pone.0149863
dc.relationMazzocco. M. M., Feigenson, L. & Halberda, J. (2011). Impairs acuity of the approximate number system underlines mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224–1237. https://doi. org/10.1111/j.1467-8624.2011.01608.x
dc.relationNieder, A. (2019). A brain for numbers. The biology of the number instinct. Cambridge: MIT Press.
dc.relationNieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185– 208. https://doi.org/10.1146/annurev.neuro.051508.135550
dc.relationNys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J. & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education. 2(1), 13–22. https://doi.org/10.1016/j.tine.2013.01.001
dc.relationPark, J. & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200. https://doi.org/10.1016/j.cognition.2014.06.011
dc.relationPiazza, M. (2010). Neurocognitive startup tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. https://doi.org/10.1016/j.tics.2010.09.008
dc.relationPiazza, M. & Izard, V. (2009). How humans count: numerosity and the parietal cortex. The Neuroscientist, 15(3), 261–273. https://doi.org/10.1177/1073858409333073
dc.relationPurpura, D. J. & Ganley, C. M. (2014). Working memory and language: Skillspecific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009
dc.relationRapin, I. (2016). Dyscalculia and the calculating brain. Pediatric Neurology, 61, 11–20. https://doi.org/10.1016/j.pediatrneurol.2016.02.007
dc.relationRevkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x
dc.relationSchneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J. & De Smedt, B. (2016). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3), 1–16. http://doi.org/10.1111/desc.12372
dc.relationSiemann, J. & Petermann, F. (2018). Innate or Acquired? Disentangling number sense and early number competencies. Frontiers in Psychology, 9, 1–13. https://doi.org/10.3389/fpsyg.2018.00571
dc.relationSpelke, E. S. (2017). Core Knowledge, Language, and Number. Language Learning and Development, 13(2), 147–170, https://doi.org/10.1080/15475441.2016.1263572
dc.relationSzkudlarek, E. & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language learning and development: the official journal of the Society for Language Development, 13(2), 171–190. https://doi.org/10.1080/15475441.2016.1263573
dc.relationTräff, L. O., Östergren, R. & Skagerlund, K. (2020). Development of early domain-specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065–1090. https://doi.org/10.1080/09297049.2020.1739259
dc.relationVanbinst, K., Ghesquiere, P. & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136. https://doi.org/10.1111/j.1751- 228X.2012.01148.x
dc.relationXenidou-Dervou, I., Van Luit, J. E. H., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., Van der Schoot, M. & Van Lieshout, E. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), 1–51. https://doi.org/10.1111/desc.12671
dc.relationZhou, X., Wei, W., Zhang, Y., Cui, J. & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1–13. https://doi.org/10.3389/ fpsyg.2015.01364
dc.relation51
dc.relation43
dc.relation1
dc.relation1
dc.rightsCopyright (c) 2020 Journal of Applied Cognitive Neuroscience
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/JACN/article/view/3340
dc.subjectNumerical cognition
dc.subjectApproximate number system
dc.subjectWorking memory
dc.subjectCognitive development
dc.subjectCognición numérica
dc.subjectDesarrollo cognitivo
dc.subjectSistema de aproximación numérica
dc.subjectMemoria de trabajo
dc.subjectPrecursores
dc.titleInteraction between domain-specific and domain-general abilities in math´s competence
dc.titleInteracción entre las capacidades específicas del dominio y las generales en la competencia matemática
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_dcae04bc
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución