dc.contributorSilva Ortega, Jorge Iván
dc.contributorSousa Santos, Vladimir
dc.creatorBerdugo Sarmiento, Kelly Margarita
dc.date2020-10-22T16:33:45Z
dc.date2020-10-22T16:33:45Z
dc.date2020
dc.date.accessioned2023-10-03T19:09:23Z
dc.date.available2023-10-03T19:09:23Z
dc.identifierBerdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155
dc.identifierhttps://hdl.handle.net/11323/7155
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168324
dc.descriptionThe Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control flower flows. The Flexible Systems of Alternating Current are an alternative that allows a dynamic response in the system allowing the control of power flow. This project describes advances and trends in Flexible Alternating Current Transmission Systems (FACTS) technologies and their uses in power systems. it evaluates concepts, properties and applications of power transfer capability during the electrical transportation activity. The review section included a bibliometric analysis using Web of Science (WoS) database considering the techniques used for energy transmission and distribution power system. Otherwise, the paper describes a framework of the different technological variants of FACTS that allows to improve the flexibility conditions in steady state, and to compensate loadability constraints in power lines, considering the potential benefits and other technical-operational aspects. This document evaluates the implementation of FACTS in the Regional Transmission System (STR) of the Department of Atlántico, as a strategy to improve the system's power transfer capacity and the response to the increase in demand projected for the coming years.
dc.descriptionLos Sistemas Eléctricos de Potencia modernos están formados por muchas interconexiones para garantizar un funcionamiento económico y seguro; sin embargo, las líneas de energía de transmisión tienen restricciones técnicas que limitan la transmisión de la electricidad, lo que hace que su flexibilidad sea limitada debido a sus pocas o escasas posibilidades de controlar los flujos de potencia. Los Sistemas Flexibles de Corriente Alterna (FACTS) son una alternativa que permite una respuesta dinámica en el sistema permitiendo el control del flujo de energía. En este proyecto se describen los avances y tendencias de las tecnologías de los FACTS y sus usos en los sistemas de energía. Además, se evalúan conceptos, propiedades y aplicaciones de la capacidad de transferencia de energía durante la actividad de transmisión de electricidad. La sección de revisión incluyó un análisis bibliométrico considerando las técnicas utilizadas para la transmisión de energía y el sistema de distribución de energía eléctrica. Por otra parte, el documento describe un marco de las diferentes variantes tecnológicas de FACTS que permite mejorar las condiciones de flexibilidad en estado estacionario y compensar las limitaciones de capacidad de carga en las líneas eléctricas, considerando los beneficios potenciales y otros aspectos técnico-operativos. Este documento evalúa la implementación de FACTS en el Sistema Regional de Transmisión (STR) del Departamento del Atlántico, como estrategia para mejorar la capacidad de transferencia de potencia del sistema y la respuesta al incremento de la demanda proyectada para los próximos años.
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherMaestría en Eficiencia Energética y Energías Renovables
dc.relationABB. (1997). Electrical Transmission and Distribution Reference Book.
dc.relationABB. (1999). FACTS , poderosos sistemas para una transmisión flexible de la energía El rápido proceso de transformación en que se encuentra el mercado de la, 1–2.
dc.relationAbdelaziz, A. Y., El-Sharkawy, M. A., & Attia, M. A. (2015). Optimal Location of Thyristor- Controlled Series Compensation and Static VAR Compensator to Enhance Steady-state Performance of Power System with Wind Penetration. Electric Power Components and Systems, 43(18), 1999–2009. https://doi.org/10.1080/15325008.2015.1075081
dc.relationAc, F., & Systems, T. (2016). Parallel compensation. Energy Management Division, 24.
dc.relationAdetokun, B. B., Muriithi, C. M., & Ojo, J. O. (2020). Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.105988
dc.relationAl-Ismail, F. S., Hassan, M. A., & Abido, M. A. (2014). RTDS implementation of STATCOMbased power system stabilizers. Canadian Journal of Electrical and Computer Engineering, 37(1), 48–56. https://doi.org/10.1109/CJECE.2014.2309323
dc.relationAli, M. A. S., Mehmood, K. K., & Kim, C.-H. (2017). Power system stability improvement through the coordination of TCPS-based damping controller and power system stabilizer. Advances in Electrical and Computer Engineering, 17(4), 27–36. https://doi.org/10.4316/AECE.2017.04004
dc.relationAlomari, Majdi; Widyan, M. A.-N. M. G. A. (2017). HOPF Bifurcation Control of Subsynchronous Resonance Utilizing UPFC. Engineering Technology & Apllied Science Research.
dc.relationAra, A. Lashkar; Kazemi, A.;Niaki, S. A. N. (2012). Multiobjective Optimal Location of FACTS Shunt-Series Controllers for Power System Operation Planning. IEEE Transactions on Power Delivery, 27 (2):, 481–490. https://doi.org/10.1109/TPWRD.2011.2176559
dc.relationBabatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. In Energy Reports (Vol. 6, pp. 101–106). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2019.11.048
dc.relationBanaei, M. R., & Kami, A. (2011). Interline power flow controller (IPFC) based damping recurrent neural network controllersfor enhancing stability. Energy Conversion and Management, 52(7), 2629–2636. https://doi.org/10.1016/j.enconman.2011.01.024
dc.relationBarrios-martínez, E., & Ángeles-camacho, C. (2017). Technical comparison of FACTS controllers in parallel connection. Revista Mexicana de Trastornos Alimentarios, 15(1), 36– 44. https://doi.org/10.1016/j.jart.2017.01.001
dc.relationBoroujeni, Hasan Fayazi; Hemmati, Reza; Boroujeni, S. M. S. (2012). Dynamic stability enhancement of a multimachine electric power system using STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 20, 1240–1248. https://doi.org/10.3906/elk-1105-4
dc.relationBrucoli, M., Rossi, F., Torelli, F., & Trovato, M. (1985). A generalized approach to the analysis of voltage stability in electric power systems. Electric Power Systems Research, 9(1), 49– 62. https://doi.org/10.1016/0378-7796(85)90054-9
dc.relationBruno, S., De Carne, G., & La Scala, M. (2016). Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Transactions on Power Systems, 31(4), 3202–3211. https://doi.org/10.1109/TPWRS.2015.2479089
dc.relationCandelo, J. E., Caicedo, N. G., & Castro-Aranda, F. (2006). Proposal for the solution of voltage stability using coordination of facts devices. 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC’06, (September). https://doi.org/10.1109/TDCLA.2006.311366
dc.relationChang, Y. C. (2013). Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement. Journal of Electrical Engineering and Technology, 8(1), 31–39. https://doi.org/10.5370/JEET.2013.8.1.031
dc.relationChang, Ya Chin, & Chang, R. F. (2013). Maximization of transmission system loadability with optimal FACTS installation strategy. Journal of Electrical Engineering and Technology, 8(5), 991–1001. https://doi.org/10.5370/JEET.2013.8.5.991
dc.relationChidambaram, I. A., & Paramasivam, B. (2013). Optimized load-frequency simulation in restructured power system with Redox Flow Batteries and Interline Power Flow Controller. International Journal of Electrical Power and Energy Systems, 50(1), 9–24. https://doi.org/10.1016/j.ijepes.2013.02.004
dc.relationChoi, J., Mount, T. D., & Thomas, R. J. (2007). Transmission expansion planning using contingency criteria. IEEE Transactions on Power Systems, 22(4), 2249–2261. https://doi.org/10.1109/TPWRS.2007.908478
dc.relationCoronado, I., Zúñiga, P., & Ramírez, J. M. (2001). FACTS : soluciones modernas para la industria eléctrica. Avance y Perspectiva, 20, 235–244.
dc.relationDai LV; Tung DD; Dong TLT; Quyen LC. (2017). Improving Power System Stability with Gramian Matrix-Based Optimal Setting of a Single Series FACTS Device: Feasibility Study in Vietnamese Power System. Hindwawi, 1–4. https://doi.org/10.1155/2017/3014510
dc.relationDarabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of largescale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106021
dc.relationDevi, S., & Geethanjali, M. (2014). Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization. International Journal of Electrical Power and Energy Systems, 62, 646–653. https://doi.org/10.1016/j.ijepes.2014.05.021
dc.relationDuarte, S. N., de Almeida, P. M., & Barbosa, P. G. (2019). A novel energizing strategy for a grid-connected modular multilevel converter operating as static synchronous compensator. International Journal of Electrical Power and Energy Systems, 109, 672–684. https://doi.org/10.1016/j.ijepes.2019.02.028
dc.relationEbeed, M., Kamel, S., & Jurado, F. (2016). Electrical Power and Energy Systems Determination of IPFC operating constraints in power flow analysis. International Journal of Electrical Power and Energy Systems, 81, 299–307. https://doi.org/10.1016/j.ijepes.2016.02.044
dc.relationElserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). A transformerless STATCOM based on a hybrid Boost Modular Multilevel Converter with reduced number of switches. Electric Power Systems Research, 146, 341–348. https://doi.org/10.1016/j.epsr.2017.02.014
dc.relationEscobar-Alvarez, H. D. (2009). Efectos De Algunos Compensadores De Voltaje En Un Sistema Eléctrico De Potencia. Universidad Nacional de Colombia.
dc.relationEslami, Mahdiyeh;Shareef, Hussain; Mohamed, Azah; Khajehzadeh, M. (2012). A Survey on Flexible AC Transmission Systems (FACTS). Przeglad Electrotechniczny, 88, 88.
dc.relationFrancisco D. Pérez A. (2013). Sistemas de transmisión flexible en corriente alterna, 4, 25–28.
dc.relationGandoman, F. H., Ahmadi, A., Sharaf, A. M., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. G. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews, 82, 502–514. https://doi.org/10.1016/j.rser.2017.09.062
dc.relationGasperic, S., & Mihalic, R. (2019). Estimation of the efficiency of FACTS devices for voltagestability enhancement with PV area criteria. Renewable and Sustainable Energy Reviews, 105, 144–156. https://doi.org/10.1016/j.rser.2019.01.039
dc.relationGers, J. M. (2013). Distribution System Analysis and Automation Distribution System Analysis and Automation. London, United Kingdom: The Institution of Engineering and Technology.
dc.relationGhorbani, A., Mozafari, B., Soleymani, S., & Ranjbar, A. M. (2016). Impact of STATCOM and SSSC on synchronous generator LOE protection. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2575–2588. https://doi.org/10.3906/elk-1403-13
dc.relationGlazunova, A. M., & Aksaeva, E. S. (2018). Estimation of Total Transfer Capability in Intersystem Tie Lines of Electric Power Systems. IFAC-PapersOnLine, 51(32), 331–336. https://doi.org/10.1016/j.ifacol.2018.11.405
dc.relationGrünbaum, R. (2008). FACTS para mejorar la eficicacia y la calidad de los sistemas de transmisiòn de corriente alterna, 83, 525–530.
dc.relationGuillardi, H., Verri, E., Antenor, J., & Pinhabel, F. (2018). HardwareX General-compensationpurpose Static var Compensator prototype Point of Common Coupling. HardwareX, 5, e00049. https://doi.org/10.1016/j.ohx.2018.e00049
dc.relationGuo, Z., Bai, X., Chan, K. W., & Xia, S. (2015). Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Generation, Transmission & Distribution, 9(1), 61–74. https://doi.org/10.1049/iet-gtd.2014.0038
dc.relationGupta, A. R., & Kumar, A. (2018). Impact of various load models on D-STATCOM allocation in DNO operated distribution network. In Procedia Computer Science (Vol. 125, pp. 862– 870). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.12.110
dc.relationGutiérrez-Alcaraz, G., González-Cabrera, N., & Gil, E. (2020). An efficient method for Contingency-Constrained Transmission Expansion Planning. Electric Power Systems Research, 182, 106208. https://doi.org/10.1016/j.epsr.2020.106208
dc.relationHafez, A. A. A. (2017). STATCOM versus SSSC for power system stabilization. IEEJ Transactions on Electrical and Electronic Engineering, 12(4), 474–483. https://doi.org/10.1002/tee.22402
dc.relationHMV Mejia Villegas S.A. (2003). Subestaciones de Alta y Extra Alta Tensión (Segunda Ed). Medellìn: HMV Ingenierìa.
dc.relationJamnani, J. G., & Pandya, M. (2019). Coordination of SVC and TCSC for Management of Power Flow by Particle Swarm Optimization. Energy Procedia, 156, 321–326. https://doi.org/10.1016/j.egypro.2018.11.149
dc.relationJensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., … Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044
dc.relationKarthikeyan, K., & Dhal, P. K. (2018). Optimal Location of STATCOM based Dynamic Stability Analysis tuning of PSS using Particle Swarm Optimization. In Materials Today: Proceedings (Vol. 5, pp. 588–595). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2017.11.122
dc.relationKazerooni, A. K., & Mutale, J. (2010). Transmission network planning under security and environmental constraints. IEEE Transactions on Power Systems, 25(2), 1169–1178. https://doi.org/10.1109/TPWRS.2009.2036800
dc.relationKirthika, N., & Balamurugan, S. (2016). A new dynamic control strategy for power transmission congestion management using series compensation. International Journal of Electrical Power and Energy Systems, 77, 271–279. https://doi.org/10.1016/j.ijepes.2015.11.031
dc.relationKumar, R., Singh, R., & Ashfaq, H. (2020). Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106589
dc.relationKundur, P., & Power, R. I. E. (1994). Power system stability and control (Primera Ed). New York: McGraw-Hill. https://doi.org/0-07-035958-X
dc.relationLi, J., Liu, F., Li, Z., Mei, S., & He, G. (2018). Impacts and benefits of UPFC to wind power integration in unit commitment. Renewable Energy, 116, 570–583. https://doi.org/10.1016/j.renene.2017.09.085
dc.relationLiu, Y. H., Watson, N. R., Zhou, K. L., & Yang, B. F. (2013). Converter system nonlinear modeling and control for transmission applications-Part I: VSC system. IEEE Transactions on Power Delivery, 28(3), 1381–1390. https://doi.org/10.1109/TPWRD.2013.2240020
dc.relationMa, T. T., & Shr, T. H. (2012). Advanced reactive power control schemes using static synchronous compensator and adaptive inverse model theory. International Review of Electrical Engineering, 7(6), 6266–6274.
dc.relationMaldonado, J. (2014). Planificación de la expansión del sistema de transmisión eléctrico considerando equipos facts. Universidad de Chile. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/116482/cfmaldonado_jg.pdf?sequence=1&isAllowed=y
dc.relationMelin, P. E., Guzman, J. I., Hernandez, F. A., Baier, C. R., Muñoz, J. A., Espinoza, J. R., & Espinosa, E. E. (2020). Analysis and control strategy for a current-source based DSTATCOM towards minimum losses. International Journal of Electrical Power and Energy Systems, 116. https://doi.org/10.1016/j.ijepes.2019.105532
dc.relationMezaache, M., Chikhi, K., & Fetha, C. (2016). UPFC device: Optimal location and parameter setting to reduce losses in electric-power systems using a genetic-algorithm method. Transactions on Electrical and Electronic Materials, 17(1), 1–6. https://doi.org/10.4313/TEEM.2016.17.1.1
dc.relationNoh, H., Cho, H., Lee, S., & Lee, B. (2020). STATCOM with SSR damping controller using geometric extraction on phase space reconstruction method. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106017
dc.relationOghorada, O. J. K., & Zhang, L. (2018). Analysis of star and delta connected modular multilevel cascaded converter-based STATCOM for load unbalanced compensation. International Journal of Electrical Power and Energy Systems, 95, 341–352. https://doi.org/10.1016/j.ijepes.2017.08.034
dc.relationPeng, F. Z. (2017). Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proceedings of the IEEE, 105(11), 2099–2115. https://doi.org/10.1109/JPROC.2017.2714022
dc.relationQader, M. R. (2015). Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy, 89, 576–592. https://doi.org/10.1016/j.energy.2015.06.012
dc.relationRamirez, J. M., Caicedo, G., & Correa, R. E. (2017). FACTS Sistemas de transmisión flexible. Cali, Colombia: Universidad del Valle Programa Editorial.
dc.relationRao, V. S., & Rao, R. S. (2017). Optimal Placement of STATCOM using Two Stage Algorithm for Enhancing Power System Static Security. In Energy Procedia (Vol. 117, pp. 575–582). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.05.151
dc.relationReyes-Archundia, E., Guardado, J. L., Moreno-Goytia, E. L., Gutierrez-Gnecchi, J. A., & Martinez-Cardenas, F. (2015). Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator. Advances in Electrical and Computer Engineering, 15(3), 17–22. https://doi.org/10.4316/AECE.2015.03003
dc.relationSadiq, A. A., Adamu, S. S., & Buhari, M. (2019). Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS. Engineering Science and Technology, an International Journal, 22(1), 33–46. https://doi.org/10.1016/j.jestch.2018.09.013
dc.relationSakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362
dc.relationSedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058
dc.relationShahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002
dc.relationShchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013
dc.relationSakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362
dc.relationSedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058
dc.relationShahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002
dc.relationShchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013
dc.relationShin, H. S., Cho, S. M., Kim, J. S., & Kim, J. C. (2013). Study of optimal location and compensation rate of thyristor- controlled series capacitor considering multi-objective function. Journal of Electrical Engineering and Technology, 8(3), 428–435. https://doi.org/10.5370/JEET.2013.8.3.428
dc.relationSIEMENS. (2016). Sistemas de Compensación en Redes de Transmisión de Energía - FACTS. Energía En Movimiento, 8, 46–51. Retrieved from https://www.energy.siemens.com/co/pool/co/publicaciones/energia-en-movimiento/febrero- 2016/articulo-8 -facts.pdf
dc.relationSimpson, R., Plumpton, A., Varley, M., Tonner, C., Taylor, P., & Dai, X. P. (2017). Press-pack IGBTs for HVDC and FACTS. Csee Journal Of Power And Energy Systems, 3(3), 302– 310. https://doi.org/10.17775/Cseejpes.2016.01740
dc.relationSingh, Bhim, Chandra, A., Al-Haddad, K., Anuradha, & Kothari, D. P. (1998). Reactive power compensation and load balancing in electric power distribution systems. International Journal of Electrical Power and Energy Systems, 20(6), 375–381. https://doi.org/10.1016/s0142-0615(98)00008-8
dc.relationSingh, Bindeshwar, Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy Reports, 3, 94–108. https://doi.org/10.1016/j.egyr.2017.07.001
dc.relationSingh, Bindeshwar, & Singh, S. (2019). GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Reports, 5, 84–103. https://doi.org/10.1016/j.egyr.2018.09.005
dc.relationSreedharan, S., Joseph, T., Joseph, S., Chandran, C. V., J, V., & Das P, V. (2020). Power system loading margin enhancement by optimal STATCOM integration – A case study. Computers and Electrical Engineering, 81. https://doi.org/10.1016/j.compeleceng.2019.106521
dc.relationThomas, J. J., & Grijalva, S. (2015). Flexible security-constrained optimal power flow. IEEE Transactions on Power Systems, 30(3), 1195–1202. https://doi.org/10.1109/TPWRS.2014.2345753
dc.relationVijay Kumar, B., & Srikanth, N. V. (2015). Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power and Energy Systems, 64, 429–438. https://doi.org/10.1016/j.ijepes.2014.07.015
dc.relationWang, K., & Crow, M. L. (2013). Modern flexible AC transmission system (FACTS) devices. Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097378.2.174
dc.relationWang, P., Wang, Y., Jiang, N., & Gu, W. (2020). A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors. International Journal of Electrical Power and Energy Systems, 121. https://doi.org/10.1016/j.ijepes.2020.106091
dc.relationXu, X., Bishop, M., Edmonds, M. J. S., & Oikarinen, D. G. (2015). A New Control Strategy for Distributed Static Compensators Considering Transmission Reactive Flow Constraints. IEEE Transactions on Power Delivery, 30(4), 1991–1998. https://doi.org/10.1109/TPWRD.2015.2389621
dc.relationYifan, Z., Wei, H., Le, Z., Yong, M., Lei, C., Zongxiang, L., & Ling, D. (2020). Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch. Energy, 190. https://doi.org/10.1016/j.energy.2019.116426
dc.relationZheng, J., & Li, J. (2012). Reactive Optimization Control for the Wind Farm with Static Var Compensator ( SVC ). 2012 24th Chinese Control and Decision Conference (CCDC), 2792–2795. https://doi.org/10.1109/CCDC.2012.6244445
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectFlexible alternating current transmission systems
dc.subjectPower system
dc.subjectFlexibility
dc.subjectConstraints
dc.subjectPower system
dc.subjectSistemas flexibles de transmision en corriente alterna
dc.subjectSistemas eléctricos de potencia
dc.subjectFlexibilidad
dc.subjectRestricciones
dc.titleMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución