dc.contributor | Silva Ortega, Jorge Iván | |
dc.contributor | Sousa Santos, Vladimir | |
dc.creator | Berdugo Sarmiento, Kelly Margarita | |
dc.date | 2020-10-22T16:33:45Z | |
dc.date | 2020-10-22T16:33:45Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:09:23Z | |
dc.date.available | 2023-10-03T19:09:23Z | |
dc.identifier | Berdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155 | |
dc.identifier | https://hdl.handle.net/11323/7155 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168324 | |
dc.description | The Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control flower flows. The Flexible Systems of Alternating Current are an alternative that allows a dynamic response in the system allowing the control of power flow. This project describes advances and trends in Flexible Alternating Current Transmission Systems (FACTS) technologies and their uses in power systems. it evaluates concepts, properties and applications of power transfer capability during the electrical transportation activity. The review section included a bibliometric analysis using Web of Science (WoS) database considering the techniques used for energy transmission and distribution power system. Otherwise, the paper describes a framework of the different technological variants of FACTS that allows to improve the flexibility conditions in steady state, and to compensate loadability constraints in power lines, considering the potential benefits and other technical-operational aspects. This document evaluates the implementation of FACTS in the Regional Transmission System (STR) of the Department of Atlántico, as a strategy to improve the system's power transfer capacity and the response to the increase in demand projected for the coming years. | |
dc.description | Los Sistemas Eléctricos de Potencia modernos están formados por muchas interconexiones para garantizar un funcionamiento económico y seguro; sin embargo, las líneas de energía de transmisión tienen restricciones técnicas que limitan la transmisión de la electricidad, lo que hace que su flexibilidad sea limitada debido a sus pocas o escasas posibilidades de controlar los flujos de potencia. Los Sistemas Flexibles de Corriente Alterna (FACTS) son una alternativa que permite una respuesta dinámica en el sistema permitiendo el control del flujo de energía. En este proyecto se describen los avances y tendencias de las tecnologías de los FACTS y sus usos en los sistemas de energía. Además, se evalúan conceptos, propiedades y aplicaciones de la capacidad de transferencia de energía durante la actividad de transmisión de electricidad. La sección de revisión incluyó un análisis bibliométrico considerando las técnicas utilizadas para la transmisión de energía y el sistema de distribución de energía eléctrica. Por otra parte, el documento describe un marco de las diferentes variantes tecnológicas de FACTS que permite mejorar las condiciones de flexibilidad en estado estacionario y compensar las limitaciones de capacidad de carga en las líneas eléctricas, considerando los beneficios potenciales y otros aspectos técnico-operativos.
Este documento evalúa la implementación de FACTS en el Sistema Regional de Transmisión (STR) del Departamento del Atlántico, como estrategia para mejorar la capacidad de transferencia de potencia del sistema y la respuesta al incremento de la demanda proyectada para los próximos años. | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Maestría en Eficiencia Energética y Energías Renovables | |
dc.relation | ABB. (1997). Electrical Transmission and Distribution Reference Book. | |
dc.relation | ABB. (1999). FACTS , poderosos sistemas para una transmisión flexible de la energía El rápido proceso de transformación en que se encuentra el mercado de la, 1–2. | |
dc.relation | Abdelaziz, A. Y., El-Sharkawy, M. A., & Attia, M. A. (2015). Optimal Location of Thyristor-
Controlled Series Compensation and Static VAR Compensator to Enhance Steady-state
Performance of Power System with Wind Penetration. Electric Power Components and
Systems, 43(18), 1999–2009. https://doi.org/10.1080/15325008.2015.1075081 | |
dc.relation | Ac, F., & Systems, T. (2016). Parallel compensation. Energy Management Division, 24. | |
dc.relation | Adetokun, B. B., Muriithi, C. M., & Ojo, J. O. (2020). Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.105988 | |
dc.relation | Al-Ismail, F. S., Hassan, M. A., & Abido, M. A. (2014). RTDS implementation of STATCOMbased power system stabilizers. Canadian Journal of Electrical and Computer Engineering,
37(1), 48–56. https://doi.org/10.1109/CJECE.2014.2309323 | |
dc.relation | Ali, M. A. S., Mehmood, K. K., & Kim, C.-H. (2017). Power system stability improvement through the coordination of TCPS-based damping controller and power system stabilizer.
Advances in Electrical and Computer Engineering, 17(4), 27–36. https://doi.org/10.4316/AECE.2017.04004 | |
dc.relation | Alomari, Majdi; Widyan, M. A.-N. M. G. A. (2017). HOPF Bifurcation Control of
Subsynchronous Resonance Utilizing UPFC. Engineering Technology & Apllied Science
Research. | |
dc.relation | Ara, A. Lashkar; Kazemi, A.;Niaki, S. A. N. (2012). Multiobjective Optimal Location of FACTS
Shunt-Series Controllers for Power System Operation Planning. IEEE Transactions on
Power Delivery, 27 (2):, 481–490. https://doi.org/10.1109/TPWRD.2011.2176559 | |
dc.relation | Babatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. In
Energy Reports (Vol. 6, pp. 101–106). Elsevier Ltd.
https://doi.org/10.1016/j.egyr.2019.11.048 | |
dc.relation | Banaei, M. R., & Kami, A. (2011). Interline power flow controller (IPFC) based damping recurrent neural network controllersfor enhancing stability. Energy Conversion and
Management, 52(7), 2629–2636. https://doi.org/10.1016/j.enconman.2011.01.024 | |
dc.relation | Barrios-martínez, E., & Ángeles-camacho, C. (2017). Technical comparison of FACTS controllers in parallel connection. Revista Mexicana de Trastornos Alimentarios, 15(1), 36–
44. https://doi.org/10.1016/j.jart.2017.01.001 | |
dc.relation | Boroujeni, Hasan Fayazi; Hemmati, Reza; Boroujeni, S. M. S. (2012). Dynamic stability enhancement of a multimachine electric power system using STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 20, 1240–1248.
https://doi.org/10.3906/elk-1105-4 | |
dc.relation | Brucoli, M., Rossi, F., Torelli, F., & Trovato, M. (1985). A generalized approach to the analysis of voltage stability in electric power systems. Electric Power Systems Research, 9(1), 49–
62. https://doi.org/10.1016/0378-7796(85)90054-9 | |
dc.relation | Bruno, S., De Carne, G., & La Scala, M. (2016). Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Transactions on Power Systems, 31(4), 3202–3211.
https://doi.org/10.1109/TPWRS.2015.2479089 | |
dc.relation | Candelo, J. E., Caicedo, N. G., & Castro-Aranda, F. (2006). Proposal for the solution of voltage stability using coordination of facts devices. 2006 IEEE PES Transmission and Distribution
Conference and Exposition: Latin America, TDC’06, (September). https://doi.org/10.1109/TDCLA.2006.311366 | |
dc.relation | Chang, Y. C. (2013). Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement. Journal of Electrical
Engineering and Technology, 8(1), 31–39. https://doi.org/10.5370/JEET.2013.8.1.031 | |
dc.relation | Chang, Ya Chin, & Chang, R. F. (2013). Maximization of transmission system loadability with optimal FACTS installation strategy. Journal of Electrical Engineering and Technology,
8(5), 991–1001. https://doi.org/10.5370/JEET.2013.8.5.991 | |
dc.relation | Chidambaram, I. A., & Paramasivam, B. (2013). Optimized load-frequency simulation in restructured power system with Redox Flow Batteries and Interline Power Flow Controller.
International Journal of Electrical Power and Energy Systems, 50(1), 9–24. https://doi.org/10.1016/j.ijepes.2013.02.004 | |
dc.relation | Choi, J., Mount, T. D., & Thomas, R. J. (2007). Transmission expansion planning using contingency criteria. IEEE Transactions on Power Systems, 22(4), 2249–2261.
https://doi.org/10.1109/TPWRS.2007.908478 | |
dc.relation | Coronado, I., Zúñiga, P., & Ramírez, J. M. (2001). FACTS : soluciones modernas para la industria eléctrica. Avance y Perspectiva, 20, 235–244. | |
dc.relation | Dai LV; Tung DD; Dong TLT; Quyen LC. (2017). Improving Power System Stability with Gramian Matrix-Based Optimal Setting of a Single Series FACTS Device: Feasibility Study in Vietnamese Power System. Hindwawi, 1–4. https://doi.org/10.1155/2017/3014510 | |
dc.relation | Darabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of largescale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power and Energy
Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106021 | |
dc.relation | Devi, S., & Geethanjali, M. (2014). Optimal location and sizing of Distribution Static
Synchronous Series Compensator using Particle Swarm Optimization. International Journal of Electrical Power and Energy Systems, 62, 646–653.
https://doi.org/10.1016/j.ijepes.2014.05.021 | |
dc.relation | Duarte, S. N., de Almeida, P. M., & Barbosa, P. G. (2019). A novel energizing strategy for a grid-connected modular multilevel converter operating as static synchronous compensator.
International Journal of Electrical Power and Energy Systems, 109, 672–684. https://doi.org/10.1016/j.ijepes.2019.02.028 | |
dc.relation | Ebeed, M., Kamel, S., & Jurado, F. (2016). Electrical Power and Energy Systems Determination of IPFC operating constraints in power flow analysis. International Journal of Electrical
Power and Energy Systems, 81, 299–307. https://doi.org/10.1016/j.ijepes.2016.02.044 | |
dc.relation | Elserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). A transformerless STATCOM based on a hybrid Boost Modular Multilevel Converter with reduced number of switches. Electric
Power Systems Research, 146, 341–348. https://doi.org/10.1016/j.epsr.2017.02.014 | |
dc.relation | Escobar-Alvarez, H. D. (2009). Efectos De Algunos Compensadores De Voltaje En Un Sistema
Eléctrico De Potencia. Universidad Nacional de Colombia. | |
dc.relation | Eslami, Mahdiyeh;Shareef, Hussain; Mohamed, Azah; Khajehzadeh, M. (2012). A Survey on
Flexible AC Transmission Systems (FACTS). Przeglad Electrotechniczny, 88, 88. | |
dc.relation | Francisco D. Pérez A. (2013). Sistemas de transmisión flexible en corriente alterna, 4, 25–28. | |
dc.relation | Gandoman, F. H., Ahmadi, A., Sharaf, A. M., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. G. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews, 82, 502–514. https://doi.org/10.1016/j.rser.2017.09.062 | |
dc.relation | Gasperic, S., & Mihalic, R. (2019). Estimation of the efficiency of FACTS devices for voltagestability enhancement with PV area criteria. Renewable and Sustainable Energy Reviews,
105, 144–156. https://doi.org/10.1016/j.rser.2019.01.039 | |
dc.relation | Gers, J. M. (2013). Distribution System Analysis and Automation Distribution System Analysis and Automation. London, United Kingdom: The Institution of Engineering and Technology. | |
dc.relation | Ghorbani, A., Mozafari, B., Soleymani, S., & Ranjbar, A. M. (2016). Impact of STATCOM and SSSC on synchronous generator LOE protection. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2575–2588. https://doi.org/10.3906/elk-1403-13 | |
dc.relation | Glazunova, A. M., & Aksaeva, E. S. (2018). Estimation of Total Transfer Capability in Intersystem Tie Lines of Electric Power Systems. IFAC-PapersOnLine, 51(32), 331–336. https://doi.org/10.1016/j.ifacol.2018.11.405 | |
dc.relation | Grünbaum, R. (2008). FACTS para mejorar la eficicacia y la calidad de los sistemas de transmisiòn de corriente alterna, 83, 525–530. | |
dc.relation | Guillardi, H., Verri, E., Antenor, J., & Pinhabel, F. (2018). HardwareX General-compensationpurpose Static var Compensator prototype Point of Common Coupling. HardwareX, 5, e00049. https://doi.org/10.1016/j.ohx.2018.e00049 | |
dc.relation | Guo, Z., Bai, X., Chan, K. W., & Xia, S. (2015). Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Generation, Transmission & Distribution, 9(1), 61–74.
https://doi.org/10.1049/iet-gtd.2014.0038 | |
dc.relation | Gupta, A. R., & Kumar, A. (2018). Impact of various load models on D-STATCOM allocation in
DNO operated distribution network. In Procedia Computer Science (Vol. 125, pp. 862–
870). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.12.110 | |
dc.relation | Gutiérrez-Alcaraz, G., González-Cabrera, N., & Gil, E. (2020). An efficient method for
Contingency-Constrained Transmission Expansion Planning. Electric Power Systems
Research, 182, 106208. https://doi.org/10.1016/j.epsr.2020.106208 | |
dc.relation | Hafez, A. A. A. (2017). STATCOM versus SSSC for power system stabilization. IEEJ
Transactions on Electrical and Electronic Engineering, 12(4), 474–483. https://doi.org/10.1002/tee.22402 | |
dc.relation | HMV Mejia Villegas S.A. (2003). Subestaciones de Alta y Extra Alta Tensión (Segunda Ed).
Medellìn: HMV Ingenierìa. | |
dc.relation | Jamnani, J. G., & Pandya, M. (2019). Coordination of SVC and TCSC for Management of Power
Flow by Particle Swarm Optimization. Energy Procedia, 156, 321–326.
https://doi.org/10.1016/j.egypro.2018.11.149 | |
dc.relation | Jensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., …
Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings,
155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044 | |
dc.relation | Karthikeyan, K., & Dhal, P. K. (2018). Optimal Location of STATCOM based Dynamic
Stability Analysis tuning of PSS using Particle Swarm Optimization. In Materials Today:
Proceedings (Vol. 5, pp. 588–595). Elsevier Ltd.
https://doi.org/10.1016/j.matpr.2017.11.122 | |
dc.relation | Kazerooni, A. K., & Mutale, J. (2010). Transmission network planning under security and environmental constraints. IEEE Transactions on Power Systems, 25(2), 1169–1178.
https://doi.org/10.1109/TPWRS.2009.2036800 | |
dc.relation | Kirthika, N., & Balamurugan, S. (2016). A new dynamic control strategy for power transmission congestion management using series compensation. International Journal of Electrical
Power and Energy Systems, 77, 271–279. https://doi.org/10.1016/j.ijepes.2015.11.031 | |
dc.relation | Kumar, R., Singh, R., & Ashfaq, H. (2020). Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106589 | |
dc.relation | Kundur, P., & Power, R. I. E. (1994). Power system stability and control (Primera Ed). New
York: McGraw-Hill. https://doi.org/0-07-035958-X | |
dc.relation | Li, J., Liu, F., Li, Z., Mei, S., & He, G. (2018). Impacts and benefits of UPFC to wind power integration in unit commitment. Renewable Energy, 116, 570–583.
https://doi.org/10.1016/j.renene.2017.09.085 | |
dc.relation | Liu, Y. H., Watson, N. R., Zhou, K. L., & Yang, B. F. (2013). Converter system nonlinear modeling and control for transmission applications-Part I: VSC system. IEEE Transactions on Power Delivery, 28(3), 1381–1390. https://doi.org/10.1109/TPWRD.2013.2240020 | |
dc.relation | Ma, T. T., & Shr, T. H. (2012). Advanced reactive power control schemes using static synchronous compensator and adaptive inverse model theory. International Review of
Electrical Engineering, 7(6), 6266–6274. | |
dc.relation | Maldonado, J. (2014). Planificación de la expansión del sistema de transmisión eléctrico considerando equipos facts. Universidad de Chile. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/116482/cfmaldonado_jg.pdf?sequence=1&isAllowed=y | |
dc.relation | Melin, P. E., Guzman, J. I., Hernandez, F. A., Baier, C. R., Muñoz, J. A., Espinoza, J. R., &
Espinosa, E. E. (2020). Analysis and control strategy for a current-source based DSTATCOM towards minimum losses. International Journal of Electrical Power and
Energy Systems, 116. https://doi.org/10.1016/j.ijepes.2019.105532 | |
dc.relation | Mezaache, M., Chikhi, K., & Fetha, C. (2016). UPFC device: Optimal location and parameter setting to reduce losses in electric-power systems using a genetic-algorithm method.
Transactions on Electrical and Electronic Materials, 17(1), 1–6. https://doi.org/10.4313/TEEM.2016.17.1.1 | |
dc.relation | Noh, H., Cho, H., Lee, S., & Lee, B. (2020). STATCOM with SSR damping controller using geometric extraction on phase space reconstruction method. International Journal of
Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106017 | |
dc.relation | Oghorada, O. J. K., & Zhang, L. (2018). Analysis of star and delta connected modular multilevel cascaded converter-based STATCOM for load unbalanced compensation. International
Journal of Electrical Power and Energy Systems, 95, 341–352. https://doi.org/10.1016/j.ijepes.2017.08.034 | |
dc.relation | Peng, F. Z. (2017). Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution
Systems (RACDS) in Smart Grid. Proceedings of the IEEE, 105(11), 2099–2115.
https://doi.org/10.1109/JPROC.2017.2714022 | |
dc.relation | Qader, M. R. (2015). Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy, 89, 576–592.
https://doi.org/10.1016/j.energy.2015.06.012 | |
dc.relation | Ramirez, J. M., Caicedo, G., & Correa, R. E. (2017). FACTS Sistemas de transmisión flexible.
Cali, Colombia: Universidad del Valle Programa Editorial. | |
dc.relation | Rao, V. S., & Rao, R. S. (2017). Optimal Placement of STATCOM using Two Stage Algorithm for Enhancing Power System Static Security. In Energy Procedia (Vol. 117, pp. 575–582).
Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.05.151 | |
dc.relation | Reyes-Archundia, E., Guardado, J. L., Moreno-Goytia, E. L., Gutierrez-Gnecchi, J. A., & Martinez-Cardenas, F. (2015). Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator. Advances in Electrical and Computer
Engineering, 15(3), 17–22. https://doi.org/10.4316/AECE.2015.03003 | |
dc.relation | Sadiq, A. A., Adamu, S. S., & Buhari, M. (2019). Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS.
Engineering Science and Technology, an International Journal, 22(1), 33–46. https://doi.org/10.1016/j.jestch.2018.09.013 | |
dc.relation | Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362 | |
dc.relation | Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal
of Electrical Power and Energy Systems, 62, 586–598.
https://doi.org/10.1016/j.ijepes.2014.04.058 | |
dc.relation | Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002 | |
dc.relation | Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344–
353. https://doi.org/10.1016/j.epsr.2016.08.013 | |
dc.relation | Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362 | |
dc.relation | Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal
of Electrical Power and Energy Systems, 62, 586–598.
https://doi.org/10.1016/j.ijepes.2014.04.058 | |
dc.relation | Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002 | |
dc.relation | Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344–
353. https://doi.org/10.1016/j.epsr.2016.08.013 | |
dc.relation | Shin, H. S., Cho, S. M., Kim, J. S., & Kim, J. C. (2013). Study of optimal location and compensation rate of thyristor- controlled series capacitor considering multi-objective function. Journal of Electrical Engineering and Technology, 8(3), 428–435.
https://doi.org/10.5370/JEET.2013.8.3.428 | |
dc.relation | SIEMENS. (2016). Sistemas de Compensación en Redes de Transmisión de Energía - FACTS. Energía En Movimiento, 8, 46–51. Retrieved from https://www.energy.siemens.com/co/pool/co/publicaciones/energia-en-movimiento/febrero-
2016/articulo-8 -facts.pdf | |
dc.relation | Simpson, R., Plumpton, A., Varley, M., Tonner, C., Taylor, P., & Dai, X. P. (2017). Press-pack
IGBTs for HVDC and FACTS. Csee Journal Of Power And Energy Systems, 3(3), 302–
310. https://doi.org/10.17775/Cseejpes.2016.01740 | |
dc.relation | Singh, Bhim, Chandra, A., Al-Haddad, K., Anuradha, & Kothari, D. P. (1998). Reactive power compensation and load balancing in electric power distribution systems. International
Journal of Electrical Power and Energy Systems, 20(6), 375–381. https://doi.org/10.1016/s0142-0615(98)00008-8 | |
dc.relation | Singh, Bindeshwar, Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy
Reports, 3, 94–108. https://doi.org/10.1016/j.egyr.2017.07.001 | |
dc.relation | Singh, Bindeshwar, & Singh, S. (2019). GA-based optimization for integration of DGs,
STATCOM and PHEVs in distribution systems. Energy Reports, 5, 84–103.
https://doi.org/10.1016/j.egyr.2018.09.005 | |
dc.relation | Sreedharan, S., Joseph, T., Joseph, S., Chandran, C. V., J, V., & Das P, V. (2020). Power system loading margin enhancement by optimal STATCOM integration – A case study. Computers and Electrical Engineering, 81. https://doi.org/10.1016/j.compeleceng.2019.106521 | |
dc.relation | Thomas, J. J., & Grijalva, S. (2015). Flexible security-constrained optimal power flow. IEEE
Transactions on Power Systems, 30(3), 1195–1202.
https://doi.org/10.1109/TPWRS.2014.2345753 | |
dc.relation | Vijay Kumar, B., & Srikanth, N. V. (2015). Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power and Energy Systems, 64, 429–438.
https://doi.org/10.1016/j.ijepes.2014.07.015 | |
dc.relation | Wang, K., & Crow, M. L. (2013). Modern flexible AC transmission system (FACTS) devices. Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Limited.
https://doi.org/10.1533/9780857097378.2.174 | |
dc.relation | Wang, P., Wang, Y., Jiang, N., & Gu, W. (2020). A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors. International Journal of Electrical Power and Energy Systems, 121.
https://doi.org/10.1016/j.ijepes.2020.106091 | |
dc.relation | Xu, X., Bishop, M., Edmonds, M. J. S., & Oikarinen, D. G. (2015). A New Control Strategy for
Distributed Static Compensators Considering Transmission Reactive Flow Constraints.
IEEE Transactions on Power Delivery, 30(4), 1991–1998.
https://doi.org/10.1109/TPWRD.2015.2389621 | |
dc.relation | Yifan, Z., Wei, H., Le, Z., Yong, M., Lei, C., Zongxiang, L., & Ling, D. (2020). Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch. Energy, 190. https://doi.org/10.1016/j.energy.2019.116426 | |
dc.relation | Zheng, J., & Li, J. (2012). Reactive Optimization Control for the Wind Farm with Static Var
Compensator ( SVC ). 2012 24th Chinese Control and Decision Conference (CCDC), 2792–2795. https://doi.org/10.1109/CCDC.2012.6244445 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Flexible alternating current transmission systems | |
dc.subject | Power system | |
dc.subject | Flexibility | |
dc.subject | Constraints | |
dc.subject | Power system | |
dc.subject | Sistemas flexibles de transmision en corriente alterna | |
dc.subject | Sistemas eléctricos de potencia | |
dc.subject | Flexibilidad | |
dc.subject | Restricciones | |
dc.title | Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS) | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/TM | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |