dc.creator | Chen, Zhiqing | |
dc.creator | Xuan, Ping | |
dc.creator | Asghar Heidari, Ali | |
dc.creator | Liu, Lei | |
dc.creator | Wu, Chengwen | |
dc.creator | Chen, Huiling | |
dc.creator | Escorcia-Gutierrez, José | |
dc.creator | Mansour, Romany F. | |
dc.date | 2023-09-18T16:18:48Z | |
dc.date | 2023-09-18T16:18:48Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:09:15Z | |
dc.date.available | 2023-10-03T19:09:15Z | |
dc.identifier | Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection,
iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679. | |
dc.identifier | https://hdl.handle.net/11323/10499 | |
dc.identifier | 10.1016/j.isci.2023.106679 | |
dc.identifier | 2589-0042 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168284 | |
dc.description | The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection. | |
dc.format | 39 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier Inc. | |
dc.publisher | United States | |
dc.relation | iScience | |
dc.relation | 1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang
Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set
Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918 | |
dc.relation | 2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong
Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713 | |
dc.relation | 3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid
High dimensional extension of the growth curve model and its application in genetics
Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4 | |
dc.relation | 4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization
Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U | |
dc.relation | 5 A.K. Shukla, P. Singh, M. Vardhan
Gene selection for cancer types classification using novel hybrid metaheuristics approach
Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661 | |
dc.relation | 6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods
Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029 | |
dc.relation | 7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15 | |
dc.relation | 8 A.M. Mabu, R. Prasad, R. Yadav
Gene expression dataset classification using artificial neural network and clustering-based feature selection
Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104 | |
dc.relation | 9 C. Jin, S.W. Jin
Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification
IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064 | |
dc.relation | 10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari
Gene selection and classification of microarray data method based on mutual information and moth flame algorithm
Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012 | |
dc.relation | 11 A. Dabba, A. Tari, S. Meftali
Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data
J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9 | |
dc.relation | 12 X. Xu, J. Li, H.-l. Chen
Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization
IEEE (2014), pp. 41-46 | |
dc.relation | 13 H. Alshamlan, G. Badr, Y. Alohali
mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling
BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910 | |
dc.relation | 14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali
Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification
Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001 | |
dc.relation | 15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes
Automatic frequency-based feature selection using discrete weighted evolution strategy
Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699 | |
dc.relation | 16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang
Dual-graph attention convolution network for 3-D point cloud classification
IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13 | |
dc.relation | 17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng
2D/3D multimode medical image alignment based on spatial histograms
Appl. Sci., 12 (2022), p. 8261 | |
dc.relation | 18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani
Integration of multi-objective PSO based feature selection and node centrality for medical datasets
Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027 | |
dc.relation | 19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri
A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm
Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061 | |
dc.relation | 20 A. Jiménez-Cordero, J.M. Morales, S. Pineda
A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification
Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009 | |
dc.relation | 21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari
Automatic ensemble feature selection using fast non-dominated sorting
Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760 | |
dc.relation | 22 Z. Sadeghian, E. Akbari, H. Nematzadeh
A hybrid feature selection method based on information theory and binary butterfly optimization algorithm
Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079 | |
dc.relation | 23 N. Singh, P. Singh
A hybrid ensemble-filter wrapper feature selection approach for medical data classification
Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396 | |
dc.relation | 24 J. Cai, J. Luo, S. Wang, S. Yang
Feature selection in machine learning: a new perspective
Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077 | |
dc.relation | 25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier
New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness
J. Ambient Intell. Hum. Comput. (2022), pp. 1-17 | |
dc.relation | 26 M.M. Mafarja, S. Mirjalili
Hybrid Whale Optimization Algorithm with simulated annealing for feature selection
Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053 | |
dc.relation | 27 J. Too, S. Mirjalili
A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study
Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553 | |
dc.relation | 28 N.S. Altman
An introduction to kernel and nearest-neighbor nonparametric regression
Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879 | |
dc.relation | 29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan
Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection
Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684 | |
dc.relation | 30 M. Shafipour, A. Rashno, S. Fadaei
Particle distance rank feature selection by particle swarm optimization
Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620 | |
dc.relation | 31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao
Training effective deep reinforcement learning agents for real-time life-cycle production optimization
J. Petrol. Sci. Eng., 208 (2022), p. 109766 | |
dc.relation | 32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen
Multi-objective robust optimisation model for MDVRPLS in refined oil distribution
Int. J. Prod. Res., 60 (2022), pp. 6772-6792 | |
dc.relation | 33 J. Tian, M. Hou, H. Bian, J. Li
Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems
Complex & Intelligent Systems (2022), pp. 1-49 | |
dc.relation | 34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili
Henry gas solubility optimization: a novel physics-based algorithm
Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015 | |
dc.relation | 35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany
Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z | |
dc.relation | 36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany
Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems
Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013 | |
dc.relation | 37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai
Slime mould algorithm: a comprehensive review of recent variants and applications
Int. J. Syst. Sci., 54 (2022), pp. 204-235 | |
dc.relation | 38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang
Slime mould algorithm: a new method for stochastic optimization
BMC Plant Biol., 20 (2020), pp. 300-323 | |
dc.relation | 39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen
RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method
Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079 | |
dc.relation | 40 J. Tu, H. Chen, M. Wang, A.H. Gandomi
The colony predation algorithm
J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y | |
dc.relation | 41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi
INFO: an efficient optimization algorithm based on weighted mean of vectors
Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516 | |
dc.relation | 42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen
RIME: a physics-based optimization
Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010 | |
dc.relation | 43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen
Harris hawks optimization: algorithm and applications
Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028 | |
dc.relation | 44 E. Çelik
A powerful variant of symbiotic organisms search algorithm for global optimization
Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294 | |
dc.relation | 45 E. Çelik, N. Öztürk, Y. Arya
Advancement of the search process of salp swarm algorithm for global optimization problems
Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292 | |
dc.relation | 46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem
Boosted sooty tern optimization algorithm for global optimization and feature selection
Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015 | |
dc.relation | 47 E. Çelik
IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning
Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169 | |
dc.relation | 48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen
Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis
Neurocomputing, 430 (2021), pp. 185-212 | |
dc.relation | 49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin
A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop
Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820 | |
dc.relation | 50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang
Research on vessel speed heading and collision detection method based on AIS data
Mobile Information Systems (2022) | |
dc.relation | 51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang
Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem
Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529 | |
dc.relation | 52 C. Zhao, Y. Zhou, X. Lai
An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems
Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093 | |
dc.relation | 53 Y. Xue, Y. Tong, F. Neri
An ensemble of differential evolution and Adam for training feed-forward neural networks
Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036 | |
dc.relation | 54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang
A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization
IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287 | |
dc.relation | 55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng
Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem
Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019 | |
dc.relation | 56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang
Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization
IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759 | |
dc.relation | 57 W. Deng, J. Xu, X.Z. Gao, H. Zhao
An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems
IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792 | |
dc.relation | 58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis
Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection
Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075 | |
dc.relation | 59 Y. Xue, B. Xue, M. Zhang
Self-adaptive particle swarm optimization for large-scale feature selection in classification
ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27 | |
dc.relation | 60 Y. Xue, X. Cai, F. Neri
A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification
Appl. Soft Comput., 127 (2022), p. 109420 | |
dc.relation | 61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush
An Improved Dragonfly Algorithm for Feature Selection
Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131 | |
dc.relation | 62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas
A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare
Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y | |
dc.relation | 63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu
An opposition-based social spider optimization for feature selection
Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x | |
dc.relation | 64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili
Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection
Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122 | |
dc.relation | 65 B. Xue, M. Zhang, W.N. Browne, X. Yao
A survey on evolutionary computation approaches to feature selection
IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420 | |
dc.relation | 66 S. Mirjalili, A. Lewis
The whale optimization algorithm
Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008 | |
dc.relation | 67 W. Zhao, Z. Zhang, L. Wang
Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300 | |
dc.relation | 68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar
AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection
Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283 | |
dc.relation | 69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi
Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864 | |
dc.relation | 70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam
Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer
IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839 | |
dc.relation | 71 H. Nguyen, X.-N. Bui
A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting
Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8 | |
dc.relation | 72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen
Advanced orthogonal learning and Gaussian barebone hunger games for engineering design
J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075 | |
dc.relation | 73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang
Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion
IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20 | |
dc.relation | 74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama
HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization
Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617 | |
dc.relation | 75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong
A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals
IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617 | |
dc.relation | 76 R. Liang, T. Le-Hung, T. Nguyen-Thoi
Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model
J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087 | |
dc.relation | 77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen
Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search
Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046 | |
dc.relation | 78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar
BHGSO: binary hunger games search optimization algorithm for feature selection problem
Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611 | |
dc.relation | 79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-9 | |
dc.relation | 80 B.J. Ma, S. Liu, A.A. Heidari
Multi-strategy ensemble binary hunger games search for feature selection
Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787 | |
dc.relation | 81 T. Blackwell
A study of collapse in bare bones particle swarm optimization
IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347 | |
dc.relation | 82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen
An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images
Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179 | |
dc.relation | 83 W. Cao, X. Wang, Z. Ming, J. Gao
A review on neural networks with random weights
Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040 | |
dc.relation | 84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang
Bidirectional stochastic configuration network for regression problems
Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016 | |
dc.relation | 85 S. Jadhav, H. He, K. Jenkins
Information gain directed genetic algorithm wrapper feature selection for credit rating
Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033 | |
dc.relation | 86 F. Tempola, R. Rosihan, R. Adawiyah
Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar
IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021) | |
dc.relation | 87 H.K. Jeon, C.S. Yang
Enhancement of ship type classification from a combination of CNN and KNN
Electronics, 10 (2021), p. 1169 | |
dc.relation | 88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei
Image classification method based on improved KNN algorithm
J. Phys. Conf. (2021) | |
dc.relation | 89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili
Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study
Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858 | |
dc.relation | 90 J. Yedukondalu, L.D. Sharma
Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection
Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006 | |
dc.relation | 91 E. Emary, H.M. Zawbaa, A.E. Hassanien
Binary grey wolf optimization approaches for feature selection
Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083 | |
dc.relation | 92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan
Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection
Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761 | |
dc.relation | 93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen
Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization
Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372 | |
dc.relation | 94 H. Ren, J. Li, H. Chen, C. Li
Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies
Math. Comput. Simulat., 181 (2021), pp. 380-409 | |
dc.relation | 95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong
An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043 | |
dc.relation | 96 A.A. Heidari, R. Ali Abbaspour, H. Chen
Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training
Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521 | |
dc.relation | 97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever
Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms
Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5 | |
dc.relation | 98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh
A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding
Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3 | |
dc.relation | 99 H. Nenavath, R.K. Jatoth
Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking
Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039 | |
dc.relation | 100 Y. Zhou, J. Xie, L. Li, M. Ma
Cloud model bat algorithm
Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102 | |
dc.relation | 101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier
Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory
Nat. Hazards (2022), pp. 1-17 | |
dc.relation | 102 S. Xiong, B. Li, S. Zhu
DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network
Complex Intell. Systems (2022), pp. 1-10 | |
dc.relation | 103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang
Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data
Sensor. Actuator. B Chem., 311 (2020), p. 127924 | |
dc.relation | 104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang
Social similarity routing algorithm based on socially aware networks in the big data environment
J. Signal Process. Syst., 94 (2022), pp. 1253-1267 | |
dc.relation | 105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo
Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data
IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394 | |
dc.relation | 106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng
User OCEAN personality model construction method using a BP neural network
Electronics, 11 (2022), p. 3022
View article CrossRefView in ScopusGoogle Scholar | |
dc.relation | 107 B. Li, Y. Lu, W. Pang, H. Xu
Image Colorization using CycleGAN with semantic and spatial rationality
Multimed. Tool. Appl. (2023), pp. 1-15 | |
dc.relation | 108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo
Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network
IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489 | |
dc.relation | 109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu
Predicting thermophilic proteins by machine learning
Curr. Bioinf., 15 (2020), pp. 493-502 | |
dc.relation | 110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi
Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN
Sustainability, 12 (2020), p. 4023 | |
dc.relation | 111 F. Yang, H. Moayedi, A. Mosavi
Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks
Sustainability, 13 (2021), p. 9898 | |
dc.relation | 112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng
JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion
Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348
View article Google Scholar | |
dc.relation | 113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang
Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction
Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504 | |
dc.relation | 114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu
Class-aware sample reweighting optimal transport for multi-source domain adaptation
Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048 | |
dc.relation | 115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu
How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective
Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726 | |
dc.relation | 116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu
Constructing dummy query sequences to protect location privacy and query privacy in location-based services
World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x | |
dc.relation | 117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang
Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification
Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944 | |
dc.relation | 118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan
Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties
IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545 | |
dc.relation | 119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen
A dummy-based user privacy protection approach for text information retrieval
Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679 | |
dc.relation | 120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu
A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection
J. Organ. End User Comput., 33 (2022), pp. 1-26 | |
dc.relation | 121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou
An effective approach for the protection of user commodity viewing privacy in e-commerce website
Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952 | |
dc.relation | 122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen
A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval
ACM Transactions on Asian and Low-Resource Language Information Processing (2023) | |
dc.relation | 123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan
Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network
IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514 | |
dc.relation | 124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen
MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals
ACM Trans. Sens. Netw., 19 (2022), pp. 1-23 | |
dc.relation | 125 J. Zhou, X. Zhang, Z. Jiang
Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine
Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684 | |
dc.relation | 126 J. Chen, X. Zhu, H. Liu
A mutual neighbor-based clustering method and its medical applications
Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184 | |
dc.relation | 127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al.
Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
J. Diabetes, 15 (2023), pp. 264-274 | |
dc.relation | 128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang
Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation
IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666 | |
dc.relation | 129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi
Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer
Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158 | |
dc.relation | 130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj
A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters
Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277 | |
dc.relation | 131 E. Zorarpacı, S.A. Özel
A hybrid approach of differential evolution and artificial bee colony for feature selection
Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004 | |
dc.relation | 39 | |
dc.relation | 1 | |
dc.relation | 5 | |
dc.relation | 26 | |
dc.rights | © 2023 The Author(s). | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3Dihub | |
dc.subject | Genetics | |
dc.subject | Computational bioinformatics | |
dc.subject | Algorithms | |
dc.title | An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |