dc.creatorChen, Zhiqing
dc.creatorXuan, Ping
dc.creatorAsghar Heidari, Ali
dc.creatorLiu, Lei
dc.creatorWu, Chengwen
dc.creatorChen, Huiling
dc.creatorEscorcia-Gutierrez, José
dc.creatorMansour, Romany F.
dc.date2023-09-18T16:18:48Z
dc.date2023-09-18T16:18:48Z
dc.date2023
dc.date.accessioned2023-10-03T19:09:15Z
dc.date.available2023-10-03T19:09:15Z
dc.identifierZhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679.
dc.identifierhttps://hdl.handle.net/11323/10499
dc.identifier10.1016/j.isci.2023.106679
dc.identifier2589-0042
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168284
dc.descriptionThe domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.
dc.format39 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier Inc.
dc.publisherUnited States
dc.relationiScience
dc.relation1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918
dc.relation2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713
dc.relation3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4
dc.relation4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U
dc.relation5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661
dc.relation6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029
dc.relation7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15
dc.relation8 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104
dc.relation9 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064
dc.relation10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012
dc.relation11 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9
dc.relation12 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-46
dc.relation13 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910
dc.relation14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001
dc.relation15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699
dc.relation16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13
dc.relation17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 8261
dc.relation18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027
dc.relation19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061
dc.relation20 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009
dc.relation21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760
dc.relation22 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079
dc.relation23 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396
dc.relation24 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077
dc.relation25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-17
dc.relation26 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053
dc.relation27 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553
dc.relation28 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879
dc.relation29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684
dc.relation30 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620
dc.relation31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 109766
dc.relation32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-6792
dc.relation33 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-49
dc.relation34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015
dc.relation35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z
dc.relation36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013
dc.relation37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-235
dc.relation38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-323
dc.relation39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079
dc.relation40 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y
dc.relation41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516
dc.relation42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010
dc.relation43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028
dc.relation44 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294
dc.relation45 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292
dc.relation46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015
dc.relation47 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169
dc.relation48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-212
dc.relation49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820
dc.relation50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022)
dc.relation51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529
dc.relation52 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093
dc.relation53 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036
dc.relation54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287
dc.relation55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019
dc.relation56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759
dc.relation57 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792
dc.relation58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075
dc.relation59 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27
dc.relation60 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 109420
dc.relation61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131
dc.relation62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y
dc.relation63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x
dc.relation64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122
dc.relation65 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420
dc.relation66 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008
dc.relation67 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300
dc.relation68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283
dc.relation69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864
dc.relation70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839
dc.relation71 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8
dc.relation72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075
dc.relation73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20
dc.relation74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617
dc.relation75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617
dc.relation76 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087
dc.relation77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046
dc.relation78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611
dc.relation79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-9
dc.relation80 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787
dc.relation81 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347
dc.relation82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179
dc.relation83 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040
dc.relation84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016
dc.relation85 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033
dc.relation86 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021)
dc.relation87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 1169
dc.relation88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021)
dc.relation89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858
dc.relation90 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006
dc.relation91 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083
dc.relation92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761
dc.relation93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372
dc.relation94 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-409
dc.relation95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043
dc.relation96 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521
dc.relation97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5
dc.relation98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3
dc.relation99 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039
dc.relation100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102
dc.relation101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17
dc.relation102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10
dc.relation103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924
dc.relation104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267
dc.relation105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394
dc.relation106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar
dc.relation107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15
dc.relation108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489
dc.relation109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502
dc.relation110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023
dc.relation111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898
dc.relation112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar
dc.relation113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504
dc.relation114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048
dc.relation115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726
dc.relation116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x
dc.relation117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944
dc.relation118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545
dc.relation119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679
dc.relation120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26
dc.relation121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952
dc.relation122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023)
dc.relation123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514
dc.relation124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23
dc.relation125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684
dc.relation126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184
dc.relation127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274
dc.relation128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666
dc.relation129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158
dc.relation130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277
dc.relation131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004
dc.relation39
dc.relation1
dc.relation5
dc.relation26
dc.rights© 2023 The Author(s).
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3Dihub
dc.subjectGenetics
dc.subjectComputational bioinformatics
dc.subjectAlgorithms
dc.titleAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución