dc.creator | Akinyemi, Segun Ajayi | |
dc.creator | Oliveira, Marcos L.S. | |
dc.creator | Nyakuma, Bemgba Bevan | |
dc.creator | Dotto, Guilherme L. | |
dc.date | 2022-07-05T15:07:31Z | |
dc.date | 2022-07-05T15:07:31Z | |
dc.date | 2022-03-24 | |
dc.date.accessioned | 2023-10-03T19:08:34Z | |
dc.date.available | 2023-10-03T19:08:34Z | |
dc.identifier | Akinyemi, S.A.; Oliveira,
M.L.S.; Nyakuma, B.B.; Dotto, G.L.
Geochemical and Morphological
Evaluations of Organic and Mineral
Aerosols in Coal Mining Areas: A
Case Study of Santa Catarina, Brazil.
Sustainability 2022, 14, 3847.
https://doi.org/10.3390/su14073847 | |
dc.identifier | https://hdl.handle.net/11323/9334 | |
dc.identifier | https://doi.org/10.3390/su14073847 | |
dc.identifier | 10.3390/su14073847 | |
dc.identifier | 2071-1050 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168153 | |
dc.description | Numerous researchers have described the correlation between the short-term contact of
nano-particulate (NP) matter in diverse coal phases and amplified death or hospitalizations for
breathing disorders in humans. However, few reports have examined the short-term consequences
of source-specific nanoparticles (NPs) on coal mining areas. Advanced microscopic techniques can
detect the ultra-fine particles (UFPs) and nanoparticles that contain potential hazardous elements
(PHEs) generated in coal mining areas. Secondary aerosols that cause multiple and complex groups
of particulate matter (PM10, PM2.5, PM1
) can be collected on dry deposition. In this study, scanning
electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were
employed to detect and define the magnitude of particulate matters on restaurants walls at coal mines
due to weathering interactions. The low cost self-made passive sampler (SMPS) documented several
minerals and amorphous phases. The results showed that most of the detected coal minerals exist in
combined form as numerous complexes comprising significant elements (e.g., Al, C, Fe, K, Mg, S,
and Ti), whereas others exist as amorphous or organic compounds. Based on the analytical approach,
the study findings present a comprehensive understanding of existing potential hazardous elements
in the nanoparticles and ultrafine particles from coal mining areas in Brazil. | |
dc.format | 13 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | MDPI AG | |
dc.publisher | Switzerland | |
dc.relation | Sustainability | |
dc.relation | 1. Munawer, M.E. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min. 2018,
17, 87–96. | |
dc.relation | 2. Gent, J.F.; Triche, E.W.; Holford, T.R.; Belanger, K.; Bracken, M.B.; Beckett, W.S.; Leaderer, B.P. Association of low-level ozone and
fine particles with respiratory symptoms in children with asthma. JAMA 2003, 290, 1859–1867. | |
dc.relation | 3. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review.
Front. Public Health 2020, 8, 14. | |
dc.relation | 4. Ramírez, O.; de la Campa, A.M.S.; Amato, F.; Moreno, T.; Silva, L.; de la Rosa, J.D. Physicochemical characterization and sources
of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2019, 652, 434–446. | |
dc.relation | 5. Blackley, D.J.; Halldin, C.N.; Laney, A.S. Continued increase in prevalence of coal workers’ pneumoconiosis in the United States,
1970–2017. Am. J. Public Health 2018, 108, 1220–1222. | |
dc.relation | 6. Moreno, T.; Trechera, P.; Querol, X.; Lah, R.; Johnson, D.; Wrana, A.; Williamson, B. Trace element fractionation between PM10 and
PM2.5 in coal mine dust: Implications for occupational respiratory health. Int. J. Coal Geol. 2019, 203, 52–59. | |
dc.relation | 7. Garcia, K.O.; Teixeira, E.C.; Agudelo-Castañeda, D.M.; Braga, M.; Alabarse, P.G.; Wiegand, F.; Kautzmann, R.M.; Silva, L.F.
Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci. Total Environ. 2014, 479,
57–65. | |
dc.relation | 8. Schneider, I.L.; Teixeira, E.C.; Agudelo-Castañeda, D.M.; e Silva, G.S.; Balzaretti, N.; Braga, M.F.; Oliveira, L.F.S. FTIR analysis and
evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM 1.0. Sci. Total Environ. 2016, 541,
1151–1160. | |
dc.relation | 9. Poenar, D.P. Microfluidic and micromachined/MEMS devices for separation, discrimination and detection of airborne par-ticles
for pollution monitoring. Micromachines 2019, 10, 483. | |
dc.relation | 10. Azam, S.; Mishra, D.P. Effects of particle size, dust concentration and dust-dispersionair pressure on rock dust inertant requirement
for coal dust explosion suppression in underground coal mines. Process Saf. Environ. Prot. 2019, 126, 35–43. | |
dc.relation | 11. Haas, E.J. Using self-determination theory to identify organizational interventions to support coal mineworkers’ dust-reducing
practices. Int. J. Min. Sci. Technol. 2019, 29, 371–378. | |
dc.relation | 12. Su, X.; Ding, R.; Zhuang, X. Characteristics of dust in coal mines in central north China and its research significance. ACS Omega
2020, 5, 9233–9250. | |
dc.relation | 13. Farmer, J.G.; Broadway, A.; Cave, M.; Wragg, J.; Fordyce, F.; Graham, M.C.; Ngwenya, B.T.; Bewley, R.J. A lead isotopic study of
the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Sci. Total Environ. 2011, 409, 4958–4965. | |
dc.relation | 14. Amirah, M.; Afiza, A.; Faizal, W.; Nurliyana, M.; Laili, S. Human health risk assessment of metal contamination through
consumption of fish. J. Environ. Pollut. Hum. Health 2013, 1, 1–5. | |
dc.relation | 15. Akinyemi, S.A.; Gitari, W.M.; Petrik, L.F.; Nyakuma, B.B.; Hower, J.C.; Ward, C.R.; Oliveira, M.L.; Silva, L.F. Environmental
evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Sci. Total Environ. 2019, 663, 177–188. | |
dc.relation | 16. Ezemonye, L.I.; Adebayo, P.O.; Enuneku, A.A.; Tongo, I.; Ogbomida, E. Potential health risk consequences of heavy metal
concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria.
Toxicol. Rep. 2019, 6, 1–9. | |
dc.relation | 17. Pan, L.; Golden, S.; Assemi, S.; Sime, M.; Wang, X.; Gao, Y.; Miller, J. Characterization of particle size and composition of respirable
coal mine dust. Minerals 2021, 11, 276. | |
dc.relation | 18. Abbasi, B.; Wang, X.; Chow, J.; Watson, J.; Peik, B.; Nasiri, V.; Riemenschnitter, K.; Elahifard, M. Review of respirable coal mine
dust characterization for mass concentration, size distribution and chemical composition. Minerals 2021, 11, 426. | |
dc.relation | 19. Mu, M.; Li, B.; Zou, Y.; Wang, W.; Cao, H.; Zhang, Y.; Sun, Q.; Chen, H.; Ge, D.; Tao, H.; et al. Coal dust exposure triggers
heterogeneity of transcriptional profiles in mouse pneumoconiosis and vitamin D remedies. Part. Fibre Toxicol. 2022, 19, 1–21. | |
dc.relation | 20. Liu, T.; Liu, S. The impacts of coal dust on miners’ health: A review. Environ. Res. 2020, 190, 109849. | |
dc.relation | 21. Silva, L.F.; Milanes, C.; Pinto, D.; Ramirez, O.; Lima, B.D. Multiple hazardous elements in nanoparticulate matter from a Caribbean
industrialized atmosphere. Chemosphere 2020, 239, 124776. | |
dc.relation | 22. Lindsley, W.G.; Green, B.J.; Blachere, F.M.; Martin, S.B.; Law, B.; Jensen, P.; Schafer, M. Sampling and Characterization of Bioaerosols.
NIOSH Manual of Analytical Methods, 5th ed.; National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2017. | |
dc.relation | 23. Cerqueira, B.; Vega, F.A.; Silva, L.; Andrade, M.L. Effects of vegetation on chemical and mineralogical characteristics of soils
developed on a decantation bank from a copper mine. Sci. Total Environ. 2012, 421, 220–229. | |
dc.relation | 24. Nordin, A.P.; da Silva, J.; de Souza, C.T.; Niekraszewicz, L.A.; Dias, J.; da Boit, K.; Oliveira, M.L.; Grivicich, I.; Garcia, A.L.H.;
Oliveira, L.F.S.; et al. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard.
Mater. 2018, 346, 263–272. | |
dc.relation | 25. Ribeiro, J.; Flores, D.; Ward, C.; Silva, L.F. Identification of nanominerals and nanoparticles in burning coal waste piles from
Portugal. Sci. Total Environ. 2010, 408, 6032–6041. | |
dc.relation | 26. Sehn, J.L.; de Leão, F.B.; da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L. Nanomineralogy in the real world: A
perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. | |
dc.relation | 27. Rojas, J.C.; Sánchez, N.E.; Schneider, I.; Oliveira, M.L.; Teixeira, E.C.; Silva, L.F. Exposure to nanometric pollutants in primary
schools: Environmental implications. Urban Clim. 2019, 27, 412–419. | |
dc.relation | 28. Gitari, M.W.; Akinyemi, S.A.; Ramugondo, L.; Matidza, M.; Mhlongo, S.E. Geochemical fractionation of metals and metalloids in
tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine, South Africa. Environ. Geochem. Health
2018, 40, 2421–2439. | |
dc.relation | 29. Akinyemi, S.A.; Gitari, W.M.; Thobakgale, R.; Petrik, L.F.; Nyakuma, B.B.; Hower, J.C.; Ward, C.R.; Oliveira, M.L.S.; Silva, L.F.O.
Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes. Environ. Geochem.
Health 2020, 42, 2771–2788. | |
dc.relation | 30. Silva, L.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; Macias, F.
Leaching of potential hazardous elements of coal cleaning rejects. Environ. Monit. Assess. 2010, 175, 109–126. | |
dc.relation | 31. Silva, L.; Macias, F.; Oliveira, M.; da Boit, M.K.; Waanders, F.B. Coal cleaning residues and Fe-minerals implications. Environ.
Monit. Assess. 2010, 172, 367–378. | |
dc.relation | 32. Oliveira, M.L.; da Boit, K.; Pacheco, F.; Teixeira, E.C.; Schneider, I.L.; Crissien, T.J.; Pinto, D.C.; Oyaga, R.M.; Silva, L.F. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of
these compounds on human health. Environ. Res. 2018, 160, 562–567. | |
dc.relation | 33. Oliveira, M.L.; da Boit, K.; Schneider, I.L.; Teixeira, E.C.; Borrero, T.J.C.; Silva, L.F. Study of coal cleaning rejects by FIB and sample
preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 2018,
188, 662–669. | |
dc.relation | 34. Meyer, H.; Meischein, M.; Ludwig, A. Rapid assessment of sputtered nanoparticle ionic liquid combinations. ACS Comb. Sci.
2018, 20, 243–250. | |
dc.relation | 35. Garzón-Manjón, A.; Meyer, H.; Grochla, D.; Löffler, T.; Schuhmann, W.; Ludwig, A.; Scheu, C. Controlling the amorphous and
crystalline state of multinary alloy nanoparticles in an ionic liquid. Nanomaterials 2018, 8, 903. | |
dc.relation | 36. Ribeiro, J.; Valentim, B.; Ward, C.; Flores, D. Comprehensive characterization of anthracite fly ash from a thermo-electric power
plant and its potential environmental impact. Int. J. Coal Geol. 2011, 86, 204–212. | |
dc.relation | 37. Quispe, D.; Pérez-López, R.; Silva, L.F.; Nieto, J.M. Changes in mobility of hazardous elements during coal combustion in Santa
Catarina power plant (Brazil). Fuel 2012, 94, 495–503. | |
dc.relation | 38. Silva, L.F.; Hower, J.C.; Izquierdo, M.; Querol, X. Complex nanominerals and ultrafine particles assemblages in phosphogypsum
of the fertilizer industry and implications on human exposure. Sci. Total Environ. 2010, 408, 5117–5122. | |
dc.relation | 39. Akinyemi, S.; Akinlua, A.; Gitari, W.; Khuse, N.; Eze, P.; Akinyeye, R.; Petrik, L. Natural weathering in dry disposed ash dump:
Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores. J. Environ. Manag. 2012,
102, 96–107. | |
dc.relation | 40. Arenas-Lago, D.; Vega, F.; Silva, L.; Andrade, M. Soil interaction and fractionation of added cadmium in some Galician soils.
Microchem. J. 2013, 110, 681–690. | |
dc.relation | 41. Giemsa, E.; Soentgen, J.; Kusch, T.; Beck, C.; Münkel, C.; Cyrys, J.; Pitz, M. Influence of local sources and meteorological
parameters on the spatial and temporal distribution of ultrafine particles in Augsburg, Germany. Front. Environ. Sci. 2021 | |
dc.relation | 42. Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso,
K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. | |
dc.relation | 43. Oliveira, M.L.; Ward, C.; Izquierdo, M.; Sampaio, C.H.; de Brum, I.A.; Kautzmann, R.M.; Sabedot, S.; Querol, X.; Silva, L.F.
Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci. Total Environ. 2012, 430,
34–47. | |
dc.relation | 44. Shahhoseiny, M.; Ardejani, F.D.; Shafaei, S.Z.; Singh, R.; Shokri, B.J. Geochemical characterisation of a pyrite containing coal
washing refuse pile produced by the Anjir Tangeh coal washing plant in Zirab, Mazandaran province, Northern Iran. In
Proceedings of the 11th International Mine Water Association Congress—Mine Water—Managing the Challenges (IMWA 2011),
Aachen, Germany, 4–11 September 2011. | |
dc.relation | 45. Gasparotto, J.; Chaves, P.R.; Martinello, K.D.B.; da Rosa-Siva, H.T.; Bortolin, R.C.; Silva, L.; Rabelo, T.K.; da Silva, J.; da Silva,
F.R.; Nordin, A.P.; et al. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust
inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 2018, 165, 44–51. | |
dc.relation | 46. Gasparotto, J.; Chaves, P.R.; Martinello, K.D.B.; Oliveira, L.F.S.; Gelain, D.P.; Moreira, J.C.F. Obesity associated with coal ash
inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 2019, 133, 110766. | |
dc.relation | 47. Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. The effects of particulate matter sources on
daily mortality: A case-crossover study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. | |
dc.relation | 48. Silva, L.; Moreno, T.; Querol, X. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 2009, 407,
4972–4974. | |
dc.relation | 49. Silva, L.F.O.; Pinto, D.; Dotto, G.L.; Hower, J.C. Nanomineralogy of evaporative precipitation of efflorescent compounds from
coal mine drainage. Geosci. Front. 2021, 12, 101003. | |
dc.relation | 50. Gurgueira, S.; Lawrence, J.; Brent, C.; Krishna, M.; Gonzalez-Flecha, B. Rapid increases in the steady-state concentration of
reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 2002, 110,
749–755. | |
dc.relation | 51. Ribeiro, J.; Taffarel, S.R.; Sampaio, C.H.; Flores, D.; Silva, L.F. Mineral speciation and fate of some hazardous contaminants in coal
waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 2013, 109, 15–23. | |
dc.relation | 52. Silva, L.F.; DaBoit, K.; Sampaio, C.H.; Jasper, A.; Andrade, M.L.; Kostova, I.J.; Waanders, F.B.; Henke, K.R.; Hower, J.C. The
occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure.
Sci. Total Environ. 2012, 416, 513–526. | |
dc.relation | 53. Silva, L.F.O.; Jasper, A.; Andrade, M.L.; Sampaio, C.H.; Dai, S.; Li, X.; Li, T.; Chen, W.; Wang, X.; Liu, H.; et al. Applied
investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly
ash. Sci. Total Environ. 2012, 419, 250–264. | |
dc.relation | 54. Silva, L.F.O.; Hower, J.C.; Dotto, G.L.; Marcos, L.S.; Oliveira, M.L.S.; Moreno, A.L. Nanoparticles from evaporite materials in
Colombian coal mine drainages. Int. J. Coal Geol. 2020, 230, 103588. | |
dc.relation | 55. Iavicoli, I.; Leso, V.; Bergamaschi, A. Toxicological effects of titanium dioxide nanoparticles: A review of in vivo studies. J.
Nanomater. 2012, 2012, 1–36. | |
dc.relation | 56. Silva, L.F.O.; Hower, J.C.; Dotto, G.L.; Oliveira, M.L.S.; Pinto, D. Titanium nanoparticles in sedimented dust aggregates from
urban children’s parks around coal ashes wastes. Fuel 2021, 285, 119162. | |
dc.relation | 57. Yang, Y.; Chen, B.; Hower, J.; Schindler, M.; Winkler, C.; Brandt, J.; di Giulio, R.; Ge, J.; Liu, M.; Fu, Y.; et al. Discovery and
ramifications of incidental Magnéli phase generation and release from industrial coal-burning. Nat. Commun. 2017, 8, 1–11. | |
dc.relation | 58. Kornberg, T.; Stueckle, T.; Antonini, J.; Rojanasakul, Y.; Castranova, V.; Yang, Y.; Wang, L. Potential toxicity and under-lying
mechanisms associated with pulmonary exposure to iron oxide nanoparticles: Conflicting literature and unclear risk. Nanomaterials
2017, 7, 307. | |
dc.relation | 59. Maher, B.A.; Ahmed, I.A.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.; Torres-Jardón, R.; CalderonGarciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. | |
dc.relation | 60. Rajendran, K.; Sen, S.; Suja, G.; Senthil, S.L.; Kumar, T.V. Evaluation of cytotoxicity of hematite nanoparticles in bacteria and
human cell lines. Colloids Surf. B Biointerfaces 2017, 157, 101–109. | |
dc.relation | 61. Silva, L.F.O.; Querol, X.; da Boit, K.M.; Fdez-Ortiz de Vallejuelo, S.; Madariaga, J.M. Brazilian coal mining residues and sulphide
oxidation by Fenton’s reaction: An accelerated weathering procedure to evaluate possible environmental im-pact. J. Hazard.
Mater. 2011, 186, 516–525. | |
dc.relation | 62. Shao, L.; Cao, Y.; Jones, T.; Santosh, M.; Silva, L.F.; Ge, S.; da Boit, K.; Feng, X.; Zhang, M.; Bérubé, K. COVID-19 mortality and
exposure to airborne PM2.5: A lag time correlation. Sci. Total Environ. 2021, 806, 151286. | |
dc.relation | 63. Silva, L.F.O.; Oliveira, M.L.S. Nanominerals and Ultrafine Particles from Brazilian Coal Fires; Elsevier: Amsterdam, The Netherlands,
2015; Volume 3. | |
dc.relation | 64. Cutruneo, C.M.N.L.; Oliveira, M.L.S.; Ward, C.R.; Hower, J.C.; de Brum, I.A.S.; Sampaio, C.H.; Kautzmann, R.M.; Taffarel, S.R.;
Teixeira, E.C.; Silva, L.F.O. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of
electron beam applications. Int. J. Coal Geol. 2014, 130, 33. | |
dc.relation | 65. Dias, C.L.; Oliveira, M.L.S.; Hower, J.C.; Taffarel, S.R.; Kautzmann, R.M.; Silva, L.F.O. Nanominerals and ultrafine particles from
coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 2014, 122, 50–60. | |
dc.relation | 13 | |
dc.relation | 1 | |
dc.relation | 7 | |
dc.relation | 14 | |
dc.rights | © 2022 by the authors. Licensee MDPI, Basel, Switzerland | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2071-1050/14/7/3847 | |
dc.subject | Geochemical | |
dc.subject | Organic minerals | |
dc.subject | Aerosols | |
dc.subject | Coal mining | |
dc.subject | Nanoparticles | |
dc.subject | Ultrafine nanoparticles | |
dc.subject | Brazil | |
dc.title | Geochemical and morphological evaluations of organic and mineral aerosols in coal mining areas: a case study of Santa Catarina, Brazil | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.coverage | Santa Catarina | |
dc.coverage | Brazil | |