dc.relation | 1 J.L. Dormann, D. Fiorani, and E. Tronc. Magnetic Relaxation in Fine-Particle Systems, volume 98 of Advances in Chemical Physics, pages 283–494. Edited by I. Prigogine and Stuart A.
Rice (John Wiley & Sons, Inc.), 1997.
2 S. Bedanta and W. Kleemann. Supermagnetism. Journal of Physics D: Applied Physics,
42(1):013001, 2009.
3 R. L´opez-Ruiz, F. Luis, J. Ses´e, J. Bartolom´e, C. Deranlot, and F. Petroff. Zero-temperature
spin-glass freezing in self-organized arrays of Co nanoparticles. EPL (Europhysics Letters),
89(6):67011, 2010.
4 G.A. Badini Confalonieri, V. Vega, A. Ebbing, D. Mishra, P. Szary, V.M. Prida, O. Petracic, and
H. Zabel. Template-assisted self-assembly of individual and clusters of magnetic nanoparticles.
Nanotechnology, 22(28):285608, 2011.
5 K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, and H. Kronmuller. Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters,
79(9):1360–1362, 2001.
6 H. He and N. J. Tao. Electrochemical Fabrication of Metal Nanowires, volume 2 of Encyclopedia
of Nanoscience and Nanotechnology, chapter 34, pages 755–772. Edited by H. S. Nalwa (American Scientific, Valencia, CA), 2004.
7 J. Garc´ıa, V. Vega, L. Iglesias, V.M. Prida, B. Hernando, E.D. Barriga-Castro, R. MendozaRes´endez, C. Luna, D. G¨orlitz, and K. Nielsch. Template-assisted Co-Ni alloys and multisegmented nanowires with tuned magnetic anisotropy. physica status solidi (a), 211(5):n/a–n/a,
2014.
8 G. Kartopu, O. Yal¸cin, M. Es-Souni, and A.C. Basaran. Magnetization behavior of ordered
and high density Co nanowire arrays with varying aspect ratio. Journal of Applied Physics,
103(9):093915, 2008.
9 P.M. Paulus, F. Luis, M. Kr¨oll, G. Schmid, and L.J. de Jongh. Low-temperature study of
the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. Journal of
Magnetism and Magnetic Materials, 224(2):180 – 196, 2001.
10 V. Vega, V.M. Prida, J.A. Garc´ıa, and M. V´azquez. Torque magnetometry analysis of magnetic
anisotropy distribution in Ni nanowire arrays. physica status solidi (a), 208(3):553–558, 2011.
11 V. Vega, T. B¨ohnert, S. Martens, M. Waleczek, J.M. Montero-Moreno, D. G¨orlitz, V.M. Prida,
and K. Nielsch. Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single
nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology,
23(46):465709, 2012.
12 P. Sergelius, J. Garcia Fernandez, S. Martens, M. Zocher, T., V. Vega Martinez, V.M. Prida,
D. G¨orlitz, and K. Nielsch. Statistical magnetometry on isolated NiCo nanowires and nanowire
arrays: a comparative study. Journal of Physics D: Applied Physics, 49(14):145005, 2016.
13 N. Eibagi, J.J. Kan, F.E. Spada, and E.E. Fullerton. Role of dipolar interactions on the thermal
stability of high-density bit-patterned media. IEEE Magnetics Letters, 3:4500204–4500204,
2012.
14 Gabriel T. Landi. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B,
89:014403, 2014.
15 D.F Coral, P. Mendoza Z´elis, M. Marciello, M.P. Morales, A. Craievich, F.H. S´anchez, and
M.B. Fern´andez van Raap. Effect of nanoclustering and dipolar interactions in heat generation
for magnetic hyperthermia. Langmuir, 32(5):1201–1213, 2016.
16 J.M. Mart´ınez Huerta, J.De La Torre Medina, L. Piraux, and A. Encinas. Self consistent
measurement and removal of the dipolar interaction field in magnetic particle assemblies and
the determination of their intrinsic switching field distribution. Journal of Applied Physics,
111(8):083914, 2012.
17 A. Hillion, A. Tamion, F. Tournus, C. Albin, and V. Dupuis. From vanishing interaction to superferromagnetic dimerization: Experimental determination of interaction lengths for embedded
co clusters. Phys. Rev. B, 95:134446, 2017.
18 Christopher R. Pike, Andrew P. Roberts, and Kenneth L. Verosub. Characterizing interactions
in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics,
85(9):6660–6667, 1999.
19 A.N. Dobrynin, T.R. Gao, N.M. Dempsey, and D. Givord. Experimental determination of the
magnetization dependent part of the demagnetizing field in hard magnetic materials. Applied
Physics Letters, 97(19):192506, 2010.
20 A. Berger, Y. Xu, B. Lengsfield, Y. Ikeda, and E. E. Fullerton. Delta;h(m, delta;m) method
for the determination of intrinsic switching field distributions in perpendicular media. IEEE
Transactions on Magnetics, 41(10):3178–3180, 2005.
21 I. Tagawa and Y. Nakamura. Relationships between high density recording performance and
particle coercivity distribution. IEEE Transactions on Magnetics, 27(6):4975–4977, 1991.
22 T. Wang, Y. Wang, Y. Fu, T. Hasegawa, H. Oshima, K. Itoh, K. Nishio, H. Masuda, F.S. Li,
H. Saito, and S. Ishio. Magnetic behavior in an ordered co nanorod array. Nanotechnology,
19(45):455703, 2008.
23 F.H. S´anchez, P. Mendoza Z´elis, M.L. Arciniegas, M.B. G.A. Pasquevich, and Fern´andez van
Raap. Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model. Physical Review B, 95:134421,
2017.
24 G.T. Landi, F.R. Arantes, D.R. Cornejo, A.F. Bakuzis, I. Andreu, and E. Natividad. Ac
susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles. Journal of
Magnetism and Magnetic Materials, 421(Supplement C):138 – 151, 2017.
25 P. Allia, M. Coisson, T. Paola, F. Vinai, M. Knobel, M. Novak, and W. Nunes. Granular Cu-Co
alloys as interacting superparamagnets. Physical Review B, 64(14):144420, 2001.
26 H. Masuda and K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of
honeycomb structures of anodic alumina. Science, 268(5216):1466–1468, 1995
27 M.P. Proen¸ca, C.T. Sousa, J. Ventura, M. V´azquez, and J. Araujo. Distinguishing nanowire and
nanotube formation by the deposition current transients. Nanoscale Research Letters, 7(1):280,
2012.
28 R. L´opez-Ruiz, C. Mag´en, F. Luis, and J. Bartolom´e. High temperature finite-size effects in the
magnetic properties of ni nanowires. Journal of Applied Physics, 112(7):073906, 2012.
29 J.M. Garc´ıa, A. Asenjo, J. Vel´azquez, D. Garc´ıa, M. V´azquez, P. Aranda, and E. Ruiz-Hitzky.
Magnetic behavior of an array of cobalt nanowires. Journal of Applied Physics, 85(8):5480–5482,
1999.
30 J. Vel´azquez, C. Garc´ıa, M. V´azquez, and A. Hernando. Dynamic magnetostatic interaction
between amorphous ferromagnetic wires. Physical Review B, 54:9903–9911, 1996.
31 J. Crangle and G.M. Goodman. The magnetization of pure iron and nickel. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, 321(1547):477–
491, 1971.
32 H. Sato and B.S. Chandrasekhar. Determination of the magnetic anisotropy constant K2 of
cubic ferromagnetic substances. Journal of Physics and Chemistry of Solids, 1(4):228 – 233,
1957.
33 R.I. Joseph. Ballistic demagnetizing factor in uniformly magnetized cylinders. Journal of
Applied Physics, 37(13):4639–4643, 1966.
34 C.A. Ross, M. Hwang, M. Shima, J.Y Cheng, M. Farhoud, T.A. Savas, H.I. Smith,
W. Schwarzacher F.M Ross, M. Redjdal, and F.B. Humphrey. Micromagnetic behavior of
electrodeposited cylinder arrays. Physical Review B, 65:144417, 2002.
35 E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 240(826):599–642, 1948.
36 R.P. Cowburn, A.O. Adeyeye, and M.E. Welland. Controlling magnetic ordering in coupled
nanomagnet arrays. New Journal of Physics, 1(1):16, 1999 | |