dc.contributorSabau, Marian
dc.contributorCanales Vega, Fausto
dc.creatorCervantes Cárdenas, Andrés Felipe De Jesús
dc.date2020-12-03T16:34:10Z
dc.date2020-12-03T16:34:10Z
dc.date2020
dc.date.accessioned2023-10-03T19:08:04Z
dc.date.available2023-10-03T19:08:04Z
dc.identifierhttps://hdl.handle.net/11323/7557
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168076
dc.descriptionThe purpose of this work is to analyze the impact of implementing a pervious concrete, where rainwater can infiltrate without compromising basic and functional parameters. A study of 50 designs of pervious concrete mix from the literature was carried out. The guide of the ACI 522-R standard was used to propose the design of 2 pervious concrete mixes and corroborate their applicability in Barranquilla, that currently has a deficit in the drainage system that gives rise to large streams when it rains. The analysis of results was carried out by means of tables, graphs, and simple and multiple linear regression was applied as a statistical method to find a correlation between the different variables analyzed. The multiple regression carried out on the pervious concretes of the G_A_Traditional group resulted in a coefficient of multiple correlation of 0,88, rating it as strong and an adjusted R2 of 0,54. It was considered that the N1 mix design can withstand a rain intensity of 223,8 mm/h while the N2 supports 96 mm/h, the difference is due to the calculated void content of 24% and 20%, respectively. Given the results obtained, it can be affirmed that the application of pervious concrete is a viable alternative for the mitigation of the problem presented, in addition to being cheaper than traditional concrete.
dc.descriptionEl presente trabajo tiene como finalidad analizar el impacto de implementar un concreto permeable, donde el agua lluvia pueda infiltrarse sin comprometer parámetros básicos y funcionales. Se realizó un estudio a 50 diseños de mezcla de concreto permeable realizados a nivel local e internacional, se utilizó la guía de la norma ACI 522-R para proponer el diseño de 2 concretos permeables y corroborar su aplicabilidad en la ciudad de Barranquilla, que actualmente tiene un déficit en el sistema de drenaje que da origen a grandes arroyos cuando llueve. El análisis de resultados se realizó por medio de tablas, gráficos y se aplicó la regresión lineal simple y múltiple como método estadístico para encontrar correlación entre las diferentes variables analizadas. La regresión múltiple realizada a los concretos permeables del grupo G_A_Tradicional dio como resultado un coeficiente de correlación múltiple de 0,88 calificándola de fuerte y un R2 ajustado de 0,54. Se consideró que el diseño de mezcla N1 puede soportar una intensidad de lluvia de 223,8 mm/h mientras que el N2 soporta 96 mm/h la diferencia se debe al contenido de vacíos calculado, de 24% y 20% respectivamente. Dado los resultados obtenidos se puede afirmar que la aplicación de concretos permeables es una alternativa viable para la mitigación de la problemática planteada, además, de ser más económico que un concreto tradicional.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherIngeniería Civil
dc.relationAASHTO. (2017). AASHTO M 80-13 (2017). https://www.techstreet.com/standards/aashto-m-80- 13-2017?product_id=1862985#jumps
dc.relationAENOR Asociación Española de Normalización. (2001). Ensayos de hormigón endurecido. Parte 4: Resistencia a compresión. Características de las máquinas de ensayo. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0024053
dc.relationAENOR Asociación Española de Normalización. (2009a). Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0043808
dc.relationAENOR Asociación Española de Normalización. (2009b). Ensayos para determinar las propiedades mecánicas y físicas de los áridos. Parte 5: Determinación del contenido de agua por secado en estufa. https://www.une.org/encuentra-tu-norma/busca-tunorma/norma?c=N0042552
dc.relationAENOR Asociación Española de Normalización. (2014). Ensayos para determinar las propiedades mecánicas y físicas de los áridos. Parte 6: Determinación de la densidad de partículas y la absorción de agua. https://www.une.org/encuentra-tu-norma/busca-tunorma/norma/?c=N0052839
dc.relationAlcaldía de Barranquilla. (, February). Plan de Ordenamiento Territorial – Alcaldía de Barranquilla. 2014. https://www.barranquilla.gov.co/transparencia/planeacion/politicaslineamientos-y-manuales/planes-estrategicos/plan-de-ordenamiento-territorial
dc.relationAlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231
dc.relationAlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Construction and Building Materials, 207, 17–27. https://doi.org/10.1016/j.conbuildmat.2019.02.111
dc.relationAmerican Concrete Institute. (1991). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Issue Reapproved).
dc.relationAmerican Concrete Institute 330R. (2008). Guide for the design and construction of ferrocement elements. www.concrete.org
dc.relationAnastasiou, E. K., Liapis, A., & Papachristoforou, M. (2017). Life Cycle Assessment of Concrete Products for Special Applications Containing EAF Slag. Procedia Environmental Sciences, 38, 469–476. https://doi.org/10.1016/j.proenv.2017.03.138
dc.relationArgos 360. (2018). RECORRIENDO LATITUDES CON CONCRETO PERMEABLE. 2018. https://www.360enconcreto.com/blog/detalle/recorriendo-latitudes-con-concreto-permeable
dc.relationArgos Colombia. (2019). Gravas y arenas ensacadas. https://colombia.argos.co/Conoce-nuestrosproductos/gravas-y-arenas-ensacadas
dc.relationASTM International. (2009). Standard Test Method for Infiltration Rate of In Place Pervious Concrete. In Annual Book of ASTM Standards (Issue C). https://doi.org/10.1520/C1701
dc.relationÁvila Acosta, R. (2001). Metodología de la investigación: cómo elaborar la tesis y/o investigación : ejemplos de diseños de tesis y/o investigación. Estudios y Ediciones R.A. https://books.google.com.co/books?id=sZ37SAAACAAJ
dc.relationBarnhouse, P. W., & Srubar, W. V. (2016). Material characterization and hydraulic conductivity modeling of macroporous recycled-aggregate pervious concrete. Construction and Building Materials, 110, 89–97. https://doi.org/10.1016/j.conbuildmat.2016.02.014
dc.relationBatezini, R., & Balbo, J. T. (2015). Study on the hydraulic conductivity by constant and falling head methods for pervious concrete. Revista IBRACON de Estruturas e Materiais, 8(3), 248–259. https://doi.org/10.1590/s1983-41952015000300002
dc.relationBehera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
dc.relationBester, J. J., Kruger, D., & Hinks, A. (1993). Guide for Design of Pavement Structures. In American Association of State Hightway and Transportation Officials.
dc.relationBlu Radio. (2019). Pelea bajo la lluvia en la Circunvalar - Blu Radio. https://www.bluradio.com/sociedad/al-menos-100-jovenes-se-enfrentaron-piedra-bajo-lalluvia-en-la-circunvalar-crbe-228996-ie5134696
dc.relationBruisnma, J., K. Smith, Peshkin, D., Ballou, L., & C., E. (2017). Guidance for Usage of Permeable Pavement at Airports. National Academies Press, 02–64.
dc.relationCackler, E. ., Ferragut, T., Harrington, D. ., Ramussen, R. ., & Wiegand, P. (2006). Evaluation of U.S. And European Concrete Pavement Noise Reduction Methods. Federal Highway Administration.
dc.relationCalderon, Y. V., & Charca, J. A. (2011). INVESTIGACION DE LOS PAVIMENTOS PERMEABLES DE CONCRETO POROSO. Universidad de San Agustín.
dc.relationCastro, J., De Solminihac, H., Videla, C., & Fernández, B. (2009). Estudio de dosificaciones en laboratorio para pavimentos porosos de hormigón. Revista Ingenieria de Construccion, 24(3), 271–284.
dc.relationCementos Argos. (2019). Generalidades y tipos de aditivos para el concreto según la NTC 1299. https://argos.co
dc.relationCemex Colombia, S. A. (2019). Grava y gravilla. https://www.cemexcolombia.com/productos/agregados/gravas
dc.relationChandrappa, A. K., & Biligiri, K. P. (2017). Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Construction and Building Materials, 153, 1–15. https://doi.org/10.1016/j.conbuildmat.2017.07.081
dc.relationChang, J. J., Yeih, W., Chung, T. J., & Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109, 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049
dc.relationChen, J., Li, H., Huang, X., & Wu, J. (2015). Permeability loss of open-graded friction course mixtures due to deformation-related and particle-related clogging: Understanding from a laboratory investigation. Journal of Materials in Civil Engineering, 27(11). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001282
dc.relationChen, X., Wang, H., Najm, H., Venkiteela, G., & Hencken, J. (2019). Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. Journal of Cleaner Production, 237, 117714. https://doi.org/10.1016/j.jclepro.2019.117714
dc.relationChindaprasirt, P., Hatanaka, S., Chareerat, T., Mishima, N., & Yuasa, Y. (2008). Cement paste characteristics and porous concrete properties. Construction and Building Materials, 22(5), 894–901. https://doi.org/10.1016/j.conbuildmat.2006.12.007
dc.relationChu, L., Fwa, T. F., & Tan, K. H. (2017). Laboratory Evaluation of Sound Absorption Characteristics of Pervious Concrete Pavement Materials. Transportation Research Record, 91–103.
dc.relationConcretedecor. (2010). Pretty and Pervious: Decorative Options for Pervious Concrete | Concrete Decor. February 8, 2010. https://www.concretedecor.net/decorativeconcretearticles/vol-10no-2-februarymarch-2010/decorative-options-for-pervious-concrete/
dc.relationCooley, L. A. (1999). Permeability of Superpave Mixtures: Evaluation of Field Permeameters. NCAT Report 99-01, 99, 63.
dc.relationCOSTA, F. B. P., LORENZI, A., HASELBACH, L., & SILVA FILHO, L. C. P. (2018). Best practices for pervious concrete mix design and laboratory tests. Revista IBRACON de Estruturas e Materiais, 11(5), 1151–1159. https://doi.org/10.1590/s1983- 41952018000500013
dc.relationDavie, T. (2008). Fundamentals of Hydrology, Second Edition. In Management (Vol. 298, Issue 10). http://books.google.com/books?hl=en&lr=&id=x0HfA6HJvogC&oi=fnd&a mp;pg=PP1&dq=Fundamentals+of+Hydrology&ots=fi3rcmkBRZ&sig=xXL Ec2AGr243RS1Iqr6q66rbyFM
dc.relationDebnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Construction and Building Materials, 213, 643–651. https://doi.org/10.1016/j.conbuildmat.2019.04.099
dc.relationDelatte, N. (2008). concrete pavement design, construction, and performance. In 2008 (11th ed.).
dc.relationDíaz Granados, V. R. (1998). Curvas sinteticas regionalizadas de Intensidad-Duracion-Frecuencia para colombia. XIII Seminario Nacional de Hidráulica e Hidrologia, 12. El-Hassan, H., Kianmehr, P., & Zouaoui, S. (2019). Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction and Building Materials, 212, 164–175. https://doi.org/10.1016/j.conbuildmat.2019.03.325
dc.relationEl Heraldo. (2018, October 6). En video | Así se vivió el desbordamiento del arroyo de Rebolo | El Heraldo. 2018. https://www.elheraldo.co/barranquilla/en-video-asi-se-vivio-eldesbordamiento-del-arroyo-de-rebolo-550488
dc.relationEl Heraldo. (2019a). Vivienda y comercio jalonan construcción en el Atlántico | El Heraldo. 2019. https://www.elheraldo.co/economia/vivienda-y-comercio-jalonan-construccion-en-elatlantico-601136
dc.relationEl Heraldo. (2019b, April 23). Basuras obligaron cierre de bocatoma del acueducto: Triple A | El Heraldo. 2019. https://www.elheraldo.co/barranquilla/basuras-obligaron-cierre-debocatoma-del-acueducto-triple-622550
dc.relationEl Heraldo. (2020, May 19). En imágenes | Emergencias por primer aguacero de 2020 en Barranquilla y su área metropolitana | El Heraldo. 2020. https://www.elheraldo.co/barranquilla/en-imagenes-emergencias-por-primer-aguacero-de- 2020-en-barranquilla-y-su-area
dc.relationEl Tiempo. (2018, May 13). Los arroyos en Barranquilla siguen causando daños pese a las obras que se están realizando - Barranquilla - Colombia - ELTIEMPO.COM. 2018. https://www.eltiempo.com/colombia/barranquilla/los-arroyos-en-barranquilla-siguencausando-danos-pese-a-las-obras-que-se-estan-realizando-216874
dc.relationEl Tiempo. (2020a, March 15). Colegios y universidades de Barranquilla suspenden clases por corid-19 - Barranquilla - Colombia. 2020. https://www.eltiempo.com/colombia/barranquilla/colegios-y-universidades-de-barranquillasuspenden-clases-por-covid-19-473104
dc.relationEl Tiempo. (2020b, June 2). Crean plan para erradicar pelea de pandilleros en Barranquilla - Barranquilla - Colombia - ELTIEMPO.COM. 2020. https://www.eltiempo.com/colombia/barranquilla/crean-plan-para-erradicar-pelea-depandilleros-en-barranquilla-502174
dc.relationEl Tiempo. (2020c, June 27). Toneladas de basura en arroyos de Barranquilla - Barranquilla - Colombia - ELTIEMPO.COM. 2020. https://www.eltiempo.com/colombia/barranquilla/toneladas-de-basura-en-arroyos-debarranquilla-511940
dc.relationElango, K. S., & Revathi, V. (2017). Fal-G Binder Pervious Concrete. Construction and Building Materials, 140, 91–99. https://doi.org/10.1016/j.conbuildmat.2017.02.086
dc.relationEnvironmental Protection Agency. (1999). Storm Water Technology Fact Sheet Porous Pavement. https://www.epa.gov/
dc.relationFernández, R. J., & Navas, A. (2012). Diseño de mezclas para evaluar su resistencia a la compresión uniaxial y su permeabilidad. Infraestructura Vial, 13(24), 40–49.
dc.relationFlores, C. E., & Pacompia, I. A. (2015). “DISEÑO DE MEZCLA DE CONCRETO PERMEABLE CON ADICIÓN DE TIRAS DE PLÁSTICO PARA PAVIMENTOS f’c 175 kg/cm2 EN LA CIUDAD DE PUNO.” UNIVERSIDAD NACIONAL DEL ALTIPLANO.
dc.relationGaedicke, Cristian, Marines, A., Mata, L., & Miankodila, F. (2015). Effect of recycled materials and compaction methods on the mechanical properties and solar reflectance index of pervious concrete. Revista Ingenieria de Construccion, 30(3), 159–167. https://doi.org/10.4067/S0718-50732015000300001
dc.relationGaedicke, Cristián, Torres, A., Huynh, K. C. T., & Marines, A. (2016). A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Construction and Building Materials, 125, 271–278. https://doi.org/10.1016/j.conbuildmat.2016.08.031
dc.relationGarber, S., Ramussen, R. ., & Harrington, D. . (2011). Guide to Cement-based Integrated Pavement Solutions. Portland Cement Association.
dc.relationGarcía, E. (2011). CONTROL DE ESCORRENTÍAS URBANAS MEDIANTE PAVIMENTOS PERMEABLES : APLICACIÓN EN CLIMAS MEDITERRÁNEOS [Universidad Politecnica de Valencia]. http://riunet.upv.es/bitstream/handle/10251/15383/TFM_EGH.pdf?sequence=1
dc.relationGobierno de Colombia. (2019, March 15). Medidas tomadas para la Educación. 15/03/2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-educacion.html
dc.relationHarvey, J., Shan, S., Li, H., Jones, D. J., & Wu, R. (2017). Fully Permeable Pavement for Stormwater Management: Progress and Obstacles to Implementation in California. Airfield and Highway Pavements 2017: Pavement Innovation and Sustainability - Proceedings of the International Conference on Highway Pavements and Airfield Technology 2017, 2017- Augus(November), 126–136. https://doi.org/10.1061/9780784480946.012
dc.relationHaselbach, L., Boyer, M., Kevern, J. T., & Schaefer, V. R. (2011). Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transportation Research Record, 2240, 107–115. https://doi.org/10.3141/2240-14
dc.relationHaselbach, L., Poor, C., & Tilson, J. (2014). Dissolved zinc and copper retention from stormwater runoff in ordinary portland cement pervious concrete. Construction and Building Materials, 53, 652–657. https://doi.org/10.1016/j.conbuildmat.2013.12.013
dc.relationHernandez, R., Fernandez, C., & Baptista, M. del P. (2010). Definición del alcance de la investigación a realizar: exploratoria, descriptiva, correlacional o explicativa. In Metodología de la investigación. http://www.casadellibro.com/libro-metodologia-de-lainvestigacion-5-ed-incluye-cd-rom/9786071502919/1960006
dc.relationHolmes, R. R., Hart, M. L., & Kevern, J. T. (2017). Heavy metal removal capacity of individual components of permeable reactive concrete. Journal of Contaminant Hydrology, 196, 52– 61. https://doi.org/10.1016/j.jconhyd.2016.12.005
dc.relationHormigón Express S.A. (2018). Hormigón Express. 2018. https://www.hormigonexpress.com/
dc.relationHu, N., Zhang, J., Xia, S., Han, R., Dai, Z., She, R., Cui, X., & Meng, B. (2020). A field performance evaluation of the periodic maintenance for pervious concrete pavement. Journal of Cleaner Production, 263, 121463. https://doi.org/10.1016/j.jclepro.2020.121463
dc.relationHuang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
dc.relationIbrahim, H. A., Goh, Y., Ng, Z. A., Yap, S. P., Mo, K. H., Yuen, C. W., & Abutaha, F. (2020). Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates. Construction and Building Materials, 253, 119251. https://doi.org/10.1016/j.conbuildmat.2020.119251
dc.relationICONTEC. (1995a). Ingeniería civil y arquitectura. Método para determinar la densidad y la absorción del agregado fino. Ntc 237, 14.
dc.relationICONTEC. (1995b). Norma Técnica Colombiana 92. Ingeniería Civil y Arquitectura. Determinación de la masa unitaria y los vacíos entre partículas y agregados.
dc.relationIDEAM. (2018). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/
dc.relationIDEAM. (2019). Ideam - Ideam. http://www.ideam.gov.co/
dc.relationINCONTEC. (1982a). NTC 1757 - MECÁNICA. MEZCLADORAS DE HORMIGÓN. GENERALIDADES.
dc.relationINCONTEC. (1982b). NTC 31 - INGENIERÍA CIVIL Y ARQUITECTURA. DEFINICIONES. In Norma Tecnica Colombiana.
dc.relationINCONTEC. (1994). NTC 1377 - Elaboracion y Curado de Especimenes de Concreto para Ensayos de Laboratorioano de Normas Técnicas y Certificación - INCONTEC.
dc.relationINCONTEC. (1995a). INGENIERÍA CIVIL Y ARQUITECTURA.DETERMINACIÓN DE LA RESISTENCIA ALDESGASTE DE AGREGADOS GRUESOS HASTA DE 37,5 mm, UTILIZANDO LA MÁQUINA DE LOS ÁNGELES.
dc.relationINCONTEC. (1995b). Norma Técnica Colombiana NTC 176: Método de ensayo para determinar la densidad y la absorción del agregado grueso. 14.
dc.relationINCONTEC. (2000). NTC 174 - Especificaciones de los agregados para concreto. In Norma Tecnica Colombiana.
dc.relationINCONTEC. (2002). NTC 32 - Tejido de Alambre y Tamices para Propósitos de Ensayo.
dc.relationINCONTEC. (2008). NTC 1299 - CONCRETOS. ADITIVOS QUÍMICOS PARA CONCRETO (Issue 571).
dc.relationINCONTEC. (2013). NTC 813 - AGUA. AGUA POTABLE (Vol. 813).
dc.relationINCONTEC. (2014). NTC 2031 - INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS. REQUISITOS METROLOGICOS Y TÉCNICOS. PRUEBAS (Issue 571).
dc.relationInstitute American Concrete. (2010). ACI 522R-10. Report on Pervious Concrete.
dc.relationInstituto Colombiano de Normas Técnicas ICONTEC. (2014). NTC 121 - Cemento pórtland. especificaciones físicas y mecánicas. In Norma Tecnica Colombiana.
dc.relationInstituto Colombiano de Normas Técnicas y Certificación - INCONTEC. (2010). NTC 673 - Ensayo de Resistencia a la Compresión de Especimenes Cilindricos de Concreto (Issue 571).
dc.relationInstituto Mexicano del Cemento y del Concreto A.C. (2004, May 1). Propiedades del concreto. 2004. http://www.imcyc.com/cyt/julio04/CONCEPTOS.pdf
dc.relationInstituto Nacional de Vías. (1994). I.N.V.E - 402 - 07 ELABORACION Y CURADO EN EL LABORATORIO DE MUESTRAS DE CONCRETO PARA ENSAYOS DE COMPRESION Y FLEXION.
dc.relationInstituto Nacional de Vías. (2008). Manual de diseño de pavimentos de concreto para vías con bajos, medios y altos volúmenes de tránsito. www.icpc.org.co
dc.relationInstituto Nacional de Vías. (2013). I.N.V.E - 142 - 07 RELACIONES DE HUMEDAD – MASA UNITARIA SECA EN LOS SUELOS (ENSAYO MODIFICADO DE COMPACTACIÓN).
dc.relationInstron. (2020). Resistencia a la compresión. https://www.instron.com.ar/es-ar
dc.relationINVIAS. (2009). Manual de Drenaje para Carreteras (Vol. 21).
dc.relationJones, D., Harvey, J., Li, H., & Campbell, B. (2010). Summary of Laboratory Tests to Assess Mechanical Properties of Permeable Pavement Materials. Researchgate.
dc.relationKant, S., Ransinchung, G. D., Rahul, K. L., & Debbarma, S. (2020). Effect of mix proportion on the structural and functional properties of pervious concrete paving mixtures. Construction and Building Materials, 255, 119260. https://doi.org/10.1016/j.conbuildmat.2020.119260
dc.relationKayhanian, M., Anderson, D., Harvey, J. T., Jones, D., & Muhunthan, B. (2012). Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots. Journal of Environmental Management, 95(1), 114–123. https://doi.org/10.1016/j.jenvman.2011.09.021
dc.relationKayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, xxxx. https://doi.org/10.1016/j.ijtst.2019.01.001
dc.relationKayhanian, M., Vichare, A., Green, P. G., & Harvey, J. (2009). Leachability of dissolved chromium in asphalt and concrete surfacing materials. Journal of Environmental Management, 90(11), 3574–3580. https://doi.org/10.1016/j.jenvman.2009.06.011
dc.relationKevern, J. (2011). Operation and Maintenance of Pervious Concrete Pavements. TRB 2011 Annual Meeting, 7495(December 2010), 1–16.
dc.relationKevern, J. (2015). Evaluating Permeability and Infiltration Requirements for Pervious Concrete. Journal of Testing and Evaluation, 43 No.3, 544–553.
dc.relationKisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
dc.relationLeadership In Energy & Environmental Design. (2018). USGBC homepage | USGBC. https://new.usgbc.org/
dc.relationLee, M. ., Tia, M., Chuang, S. ., & Huang, Y. (2013). Pollution and purification study of the permeable concrete pavement material. J. Mater. Civ. Eng.
dc.relationLi, H., Harvey, J. T., Holland, T. J., & Kayhanian, M. (2013). Erratum: The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management (Environ. Res. Lett. (2013) 8 (015023)). Environmental Research Letters, 8(4). https://doi.org/10.1088/1748-9326/8/4/049501
dc.relationLi, Hui, Kayhanian, M., & Harvey, J. T. (2013). Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods. Journal of Environmental Management, 118, 144–152. https://doi.org/10.1016/j.jenvman.2013.01.016
dc.relationLiu, J., & Borst, M. (2018). Performances of metal concentrations from three permeable pavement infiltrates. Water Research, 136, 41–53. https://doi.org/10.1016/j.watres.2018.02.050
dc.relationLiu, T., Wang, Z., Zou, D., Zhou, A., & Du, J. (2019). Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research, 122(August 2018), 72–82. https://doi.org/10.1016/j.cemconres.2019.05.004
dc.relationLu, G., Wang, Y., Li, H., Wang, D., & Oeser, M. (2019). The environmental impact evaluation on the application of permeable pavement based on life cycle analysis. International Journal of Transportation Science and Technology, 8(4), 351–357. https://doi.org/10.1016/j.ijtst.2019.05.006
dc.relationLu, J. X., Yan, X., He, P., & Poon, C. S. (2019). Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 234, 1102– 1112. https://doi.org/10.1016/j.jclepro.2019.06.260
dc.relationMaría Blender. (2015). Isla de calor urbana - Arquitectura y Energía. http://www.arquitecturayenergia.cl/home/isla-de-calor-urbana/
dc.relationMartínez, R., Tuya, L., Martínez, M., Perez, A., & Cánovas, A. (2009). Instituto Superior de Ciencias Médicas de La Habana (ISCM-H). In Rev haban cienc méd La Habana: Vol. VIII (Issue 2).
dc.relationMeininger, R. C. (1988). No-Fine Pervious Concrete for Paving.
dc.relationMeng, X., Chi, Y., Jiang, Q., Liu, R., Wu, K., & Li, S. (2019). Experimental investigation on the flexural behavior of pervious concrete beams reinforced with geogrids. Construction and Building Materials, 215, 275–284. https://doi.org/10.1016/j.conbuildmat.2019.04.217
dc.relationMonje, C. A. (2011). Metodología de la investigación cuantitativa y cualitativa. Guía didáctica. Universidad Surcolombiana, 1–216. http://carmonje.wikispaces.com/file/view/Monje+Carlos+Arturo++Guía+didáctica+Metodología+de+la+investigación.pdf
dc.relationMontes, F., & HASELBACH, L. (2006). Measuring Hydraulic Conductivity. Environ. Eng. Sci.
dc.relationMontes, F., Valavala, S., & Haselbach, L. (2005). A New Test Method for Porosity Measurements of Portland Cement Pervious Concrete. Journal of ASTM International, 2, 1–13. https://doi.org/https://doi.org/10.1520/JAI12931. ISSN 1546-962X
dc.relationMoreno-Rodriguez, N. (2014). Zonificación geotecnica de los suelos en Barranquilla. Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology: ”Excellence in Engineering to Enhance a Country’s Productivity”, 1–9.
dc.relationMoujir, Y. F., & Castañeda, L. F. (2014). Diseño y aplicacion de concreto poroso para pavimentos [Universidad Pontificia Bolivariana]. In The British Journal of Psychiatry (Vol. 112, Issue 483). https://doi.org/10.1192/bjp.112.483.211-a
dc.relationNational Ready Mixed Concrete Association. (2000). How Should Strength be Measured for Concrete Paving? In 2000. https://www.nrmca.org/aboutconcrete/cips/16p.pdf
dc.relationNational Ready Mixed Concrete Association. (2006). CIP 16 Resistencia a Flexión del concreto. Concrete in Practice, 2. https://www.nrmca.org/aboutconcrete/cips/CIP16es.pdf
dc.relationNational Ready Mixed Concrete Association. (2015). CIP 35 - Prueba de Resistencia a Compresion del Concreto. El Concreto En La Práctica ¿Qué, Por Qué y Como?, 2. http://www.nrmca.org/aboutconcrete/cips/CIP35es.pdf
dc.relationNCAT Field Permeameter. (2019). National Center for Asphalt Technology. http://eng.auburn.edu/research/centers/ncat/
dc.relationOrganización Mundial de la Salud. (2020, April 1). Orientaciones para el público. 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public
dc.relationOrlando López, J. (2004). POROSIDAD DEL CONCRETO [Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/08/08_2394_C.pdf
dc.relationOrozco, M., Avila, Y., Restrepo, S., & Parody, A. (2018). Factores influyentes en la calidad del concreto: Una encuesta a los actores relevantes de la industria del hormigón. Revista Ingenieria de Construccion, 33(2), 161–172. https://doi.org/10.4067/s0718- 50732018000200161
dc.relationPanza, E. (2014). Historia De La Planeación En Barranquilla: Fundamentos Conceptuales Y Normativos Para Su Construcción. Módulo Arquitectura Cuc, 9(1), 11–34.
dc.relationPavipor. (2018). Pavimento hormigón poroso Dry-Quick - Pavimentos Pavipor. https://pavipor.com/pavimento-hormigon-poroso/
dc.relationPieralisi, R., Cavalaro, S. H. P., & Aguado, A. (2017). Advanced numerical assessment of the permeability of pervious concrete. Cement and Concrete Research, 102(August), 149–160. https://doi.org/10.1016/j.cemconres.2017.09.009
dc.relationPorrero, J. S., Ramos, C. R., Grases, J. G., & Velazco, J. G. (2014). Manual del concreto estructural (1st ed., Vol. 1). https://es.slideshare.net/nilsey/manual-del-concreto
dc.relationPublimetro. (2018, April 10). Expertos estudian “gota a gota” de dónde provienen los arroyos en Barranquilla y sus conclusiones lo sorprenderán | Publimetro Colombia. 2018. https://www.publimetro.co/co/barranquilla/2018/05/10/expertos-estudian-gota-gota- dondeprovienen-los-arroyos-barranquilla-conclusiones-lo-sorprenderan.html
dc.relationPUERTO DE BARRANQUILLA SOCIEDAD PORTUARIA. (2018). Puerto De Barranquilla. https://www.puertodebarranquilla.com/index.php/historia/
dc.relationQuiroz, M. V., & Osuna, L. E. (2006). APOYO DIDÁCTICO PARA LA ENSEÑANZA Y APRENDIZAJE EN LA ASIGNATURA DE «TECNOLOGÍA DEL HORMIGÓN».
dc.relationRangelov, M., Nassiri, S., Chen, Z., Russell, M., & Uhlmeyer, J. (2017). Quality evaluation tests for pervious concrete pavements’ placement. International Journal of Pavement Research and Technology, 10(3), 245–253. https://doi.org/10.1016/j.ijprt.2017.01.007
dc.relationRemolina Durán, J. G. (2018). DETERMINACIÓN DE PARAMETROS FISICO-MECANICOS Y DE DURABILIDAD EN CONCRETO RECICLADO CON RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN (RCD). Universidad de la costa.
dc.relationRepública De Colombia Ministerio De Minas Y Energía. (2003). Glosario Técnico Minero (Agencia Na). https://www.anm.gov.co/sites/default/files/DocumentosAnm/glosariominero.pdf
dc.relationRibeiro, A., Dos Santos, V., Pagnussat, D. T., & Brandalise, R. N. (2018). Assessment of a system for the prediction of water permeability coefficient in pervious concretes. Ceramica, 64(372), 519–525. https://doi.org/10.1590/0366-69132018643722445
dc.relationRodríguez-Rojas, M. I., Huertas-Fernández, F., Moreno, B., Martínez, G., & Grindlay, A. L. (2018). A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. Journal of Environmental Management, 205, 151–162. https://doi.org/10.1016/j.jenvman.2017.09.075
dc.relationSaadeh, S., Ralla, A., Al-Zubi, Y., Wu, R., & Harvey, J. (2019). Application of fully permeable pavements as a sustainable approach for mitigation of stormwater runoff. International Journal of Transportation Science and Technology, xxxx, 1–13. https://doi.org/10.1016/j.ijtst.2019.02.001
dc.relationSandoval, G. F. B., de Moura, A. C., Jussiani, E. I., Andrello, A. C., & Toralles, B. M. (2020). Proposal of maintenance methodology for pervious concrete (PC) after the phenomenon of clogging. Construction and Building Materials, 248, 118672. https://doi.org/10.1016/j.conbuildmat.2020.118672
dc.relationSANDOVAL, G. F. B., GALOBARDES, I., DIAS, C., CAMPOS, A., & TORALLES, B. M. (2019). Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties. Revista IBRACON de Estruturas e Materiais, 12(3), 590–607. https://doi.org/10.1590/s1983-41952019000300009
dc.relationSandoval, G. F. B., Galobardes, I., Schwantes-Cezario, N., Campos, A., & Toralles, B. M. (2019). Correlation between permeability and porosity for pervious concrete (PC). DYNA (Colombia), 86(209), 151–159. https://doi.org/10.15446/dyna.v86n209.77613
dc.relationScholz, M., & Grabowiecki, P. (2007). Review of permeable pavement systems. Building and Environment, 42(11), 3830–3836. https://doi.org/10.1016/j.buildenv.2006.11.016
dc.relationSiriwardene, N. R., Deletic, A., & Fletcher, T. D. (2007). Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 41(7), 1433–1440. https://doi.org/10.1016/j.watres.2006.12.040
dc.relationStacey Enesey, K. (2010). Pretty and Pervious: Decorative Options for Pervious Concrete. Feb 8. https://www.concretedecor.net/decorativeconcretearticles/vol-10-no-2-februarymarch- 2010/decorative-options-for-pervious-concrete/
dc.relationStinson, M. R., Berengier, M. C., Daigle, G. A., & Hamet, J. F. (1997). Porous road pavements: acoustical characterization and propagation effects. J. Acoust. Soc. Am., 155–162. https://doi.org/https://doi.org/10.1121/1.417998
dc.relationTabatabaeian, M., Khaloo, A., & Khaloo, H. (2019). An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials, 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820
dc.relationTavares, L. M., & Kazmierczak, C. S. (2016). The influence of recycled concrete aggregates in pervious concrete. Revista IBRACON de Estruturas e Materiais, 9(1), 75–89. https://doi.org/10.1590/s1983-41952016000100006
dc.relationTennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious Concrete Pavements. Portland Cement Association.
dc.relationThe Concrete Network. (n.d.). Pervious Concrete Pavements - Enviromental Concrete - The Concrete Network. Retrieved June 13, 2020, from https://www.concretenetwork.com/pervious/
dc.relationTian, B., Liu, Y., Niu, K., Li, S., Xie, J., & Li, X. (2014). Reduction of Tire-Pavement Noise by Porous Concrete Pavement. Journal of Materials in Civil Engineering, 26, 233–239. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000809
dc.relationTorres, J., Mejía de Gutiérrez, R., Rodríguez, C., Rodríguez, E., & Delvasto, S. (2009). Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros. Revista Facultad de Ingenieria, 48, 55–64.
dc.relationUlloa-Mayorga, V. A., Uribe-Garcés, M. A., Paz-Gómez, D. P., Alvarado, Y. A., Torres, B., & Gasch, I. (2018). Performance of pervious concrete containing combined recycled aggregates. Ingenieria e Investigacion, 38(2), 34–41. https://doi.org/10.15446/ing.investig.v38n2.67491
dc.relationUnión temporal de obras hidráulicas. (2020). Concreto de 2400 PSI Cotización.
dc.relationUniversidad del Norte. (2013). RESULTADO DEL ANÁLISIS DE LA PROPUESTA DEL PLAN DE ORDENAMIENTO TERRITORIAL DEL DISTRITO DE BARRANQUILLA 2012-2032 GRUPO. 140. https://www.uninorte.edu.co/documents/73923/11941478/Documento+Resumen+POT+201 2.pdf/7a6560c4-f0ff-4e03-b600-1aa9bfcc8041?version=1.2
dc.relationValavala, S., Montes, F., & Haselbach, L. (2006). Area rated rational coefficients values for portland cement pervious concrete pavement. American Society of Civil Engineers.
dc.relationValdivia, M. (n.d.). Manuel Valdivia | Flickr. Retrieved June 13, 2020, from https://www.flickr.com/photos/manuel_valdivia_munoz/
dc.relationWang, G., Chen, X., Dong, Q., Yuan, J., & Hong, Q. (2020). Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. Journal of Cleaner Production, 262, 121208. https://doi.org/10.1016/j.jclepro.2020.121208
dc.relationWeiss, P. ., Kayhanian, M., Gulliver, J. ., & Khazanovich, L. (2017). Permeable pavement in northern North American urban areas: research review and knowledge gaps. Int. J. Pavement Eng, 1–20.
dc.relationWoods-Ballard, B., Kellagher, R., Woods Ballard, B., Construction Industry Research and Information Association, Great Britain, Department of Trade and Industry, & Environment Agency. (2007). The SUDS manual. In Ciria, …. http://www.persona.uk.com/A47postwick/deposit-docs/DD-181.pdf
dc.relationXie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605–1621. https://doi.org/10.1016/j.jclepro.2018.11.134
dc.relationYang, X., Liu, J., Li, H., & Ren, Q. (2020). Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder. Construction and Building Materials, 235, 117532. https://doi.org/10.1016/j.conbuildmat.2019.117532
dc.relationYeih, W., & Chang, J. J. (2018). The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates. Construction and Building Materials, 197, 813–820. https://doi.org/10.1016/j.conbuildmat.2018.08.178
dc.relationYu, F., Sun, D., Wang, J., & Hu, M. (2019). Influence of aggregate size on compressive strength of pervious concrete. Construction and Building Materials, 209, 463–475. https://doi.org/10.1016/j.conbuildmat.2019.03.140
dc.relationZhang, K., Yong, F., McCarthy, D. T., & Deletic, A. (2018). Predicting long term removal of heavy metals from porous pavements for stormwater treatment. Water Research, 142, 236– 245. https://doi.org/10.1016/j.watres.2018.05.038
dc.relationZhang, Z., Zhang, Y., Yan, C., & Liu, Y. (2017). Influence of crushing index on properties of recycled aggregates pervious concrete. Construction and Building Materials, 135, 112–118. https://doi.org/10.1016/j.conbuildmat.2016.12.203
dc.relationZhong, R., Leng, Z., & Poon, C. (2018). Research and application of pervious concrete as a sustainable pavement material : A state-of-the-art and state-of-the-practice review. Construction and Building Materials, 183, 544–553. https://doi.org/10.1016/j.conbuildmat.2018.06.131
dc.relationZhou, H., Li, H., Abdelhady, A., Liang, X., Wang, H., & Yang, B. (2019). Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Construction and Building Materials, 212, 130–139. https://doi.org/10.1016/j.conbuildmat.2019.03.310
dc.relationZhou, J., Zheng, M., Wang, Q., Yang, J., & Lin, T. (2016). Flexural fatigue behavior of polymermodified pervious concrete with single sized aggregates. Construction and Building Materials, 124, 897–905. https://doi.org/10.1016/j.conbuildmat.2016.07.136 zoológico de Portland, O. (2016). zoológico de Portland, Oregon. https://www.oregonzoo.org/
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectInfiltration
dc.subjectPorosity
dc.subjectPervious concrete
dc.subjectRain intensity
dc.subjectInfiltración
dc.subjectPorosidad
dc.subjectConcreto permeable
dc.subjectConcreto permeable
dc.subjectIntensidad de lluvia
dc.titleEstudio de factibilidad del concreto permeable y su posible aplicación en la ciudad de Barranquilla, Colombia
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución