dc.creator | Diehl, Matheus | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | Schnorr, Carlos Eduardo | |
dc.creator | Netto, Matias S. | |
dc.creator | Bruckmann, Franciele | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2023-08-23T21:26:23Z | |
dc.date | 2023-02-23 | |
dc.date | 2023-08-23T21:26:23Z | |
dc.date | 2023-02-23 | |
dc.date.accessioned | 2023-10-03T19:08:03Z | |
dc.date.available | 2023-10-03T19:08:03Z | |
dc.identifier | Diehl, M., Silva, L.F.O., Schnorr, C. et al. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. Environ Sci Pollut Res 30, 51920–51931 (2023). https://doi.org/10.1007/s11356-023-26006-4 | |
dc.identifier | 0944-1344 | |
dc.identifier | https://hdl.handle.net/11323/10403 | |
dc.identifier | 10.1007/s11356-023-26006-4 | |
dc.identifier | 1614-7499 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168073 | |
dc.description | Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g−1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications. | |
dc.format | 1 página | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer Science + Business Media | |
dc.publisher | Germany | |
dc.relation | Environmental Science and Pollution Research | |
dc.relation | Abdullah AHD, Chalimah S, Primadona I, Hanantyo MHG (2018) Physical and chemical properties of corn, cassava, and potato starchs. Environ Earth Sci 160(1):012003. https://doi.org/10.1088/1755-1315/160/1/012003 | |
dc.relation | Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Ph Equilibria 317:9–14. https://doi.org/10.1016/j.fluid.2011.12.026 | |
dc.relation | Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272. https://doi.org/10.1016/j.cej.2016.08.089 | |
dc.relation | Al-Ghouti MA, Al-Absi RS (2020) Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep 10:15928. https://doi.org/10.1038/s41598-020-72996-3 | |
dc.relation | AlHazmi GA, AbouMelha KS, El-Desouky MG, El-Bindary AA (2022) Effective adsorption of doxorubicin hydrochloride on zirconium metal-organic framework: equilibrium, kinetic and thermodynamic studies. J Mol Struct 1258:132679. https://doi.org/10.1016/j.molstruc.2022.132679 | |
dc.relation | Ali I, Alharbi OM, Alothman ZA, Badjah AY (2018) Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem Photobiol 94(5):935–941. https://doi.org/10.1111/php.12937 | |
dc.relation | Ali I, Alharbi OM, Alothman ZA, Al-Mohaimeed AM, Alwarthan A (2019) Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ Res 170:389–397. https://doi.org/10.1016/j.envres.2018.12.066 | |
dc.relation | Allouss D, Essamlali Y, Amadine O, Chakir A, Zahouily M (2019) Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Adv 9(65):37858–37869. https://doi.org/10.1039/C9RA06450H | |
dc.relation | Alothman ZA, Bahkali AH, Khiyami MA, Alfadul SM, Wabaidur SM, Alam M, Alfarhan BZ (2020) Low cost biosorbents from fungi for heavy metals removal from wastewater. Sep Sci Technol 55(10):1766–1775. https://doi.org/10.1080/01496395.2019.1608242 | |
dc.relation | Alqadami AA, Naushad M, Abdalla MA, Ahamad T, AlOthman ZA, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/j.jclepro.2017.04.085 | |
dc.relation | Alqadami AA, Khan MA, Siddiqui MR, Alothman ZA (2018) Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water. Microporous and Mesoporous Mater 261:198–206. https://doi.org/10.1016/j.micromeso.2017.11.016 | |
dc.relation | Alshareef SA, Otero M, Alanazi HS, Siddiqui MR, Khan MA, Alothman ZA (2021) Upcycling olive oil cake through wet torrefaction to produce hydrochar for water decontamination. Chem Eng Res Des 170:13–22. https://doi.org/10.1016/j.cherd.2021.03.031 | |
dc.relation | Alshareef SA, Alqadami AA, Khan MA, Alanazi HS, Siddiqui MR, Jeon BH (2022) Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour Technol 347:126363. https://doi.org/10.1016/j.biortech.2021.126363 | |
dc.relation | Azhar A, Yamauchi Y, Allah AE, Alothman ZA, Badjah AY, Naushad M, Habila M, Wabaidur S, Wang J, Zakaria MB (2019) Nanoporous iron oxide/carbon composites through in-situ deposition of Prussian blue nanoparticles on graphene oxide nanosheets and subsequent thermal treatment for supercapacitor applications. Nanomaterials 9(5):776. https://doi.org/10.3390/nano9050776 | |
dc.relation | Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1:111–117. https://doi.org/10.1007/s13201-011-0014-1 | |
dc.relation | Bruckmann FS, Rossato Viana A, Tonel MZ, Fagan SB, Garcia WJDS, Oliveira AHD, Dorneles LS, Mortari SR, Da Silva WL, Da Silva IZ, Rhoden CRB (2022) Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity. Environ Sci Pollut Res 29:70413–70434. https://doi.org/10.1007/s11356-022-20786-x | |
dc.relation | Caponi N, Silva LF, Oliveira ML, Franco DS, Netto MS, Vedovatto F, Tres MV, Zabot GL, Abaide ER, Dotto GL (2022). Adsorption of basic fuchsin using soybean straw hydrolyzed by subcritical water. Environ Sci Pollut Res 1–8. https://doi.org/10.1007/s11356-022-20652-w | |
dc.relation | Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LA, Calvete T (2012) Comparison of Spirulina platensis microalgae and commercial activated carbonas adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241:146–153. https://doi.org/10.1016/j.jhazmat.2012.09.026 | |
dc.relation | Cheng J, Zhan C, Wu J, Cui Z, Si J, Wang Q, Peng X, Turng LS (2020) Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 5(10):5389–5400. https://doi.org/10.1021/acsomega.9b04425 | |
dc.relation | Da BruckmannSilva F, Ledur CM, da Silva IZ, Dotto GL, Rhoden CRB (2022) A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide. J Mol Liq 353:118837. https://doi.org/10.1016/j.molliq.2022.118837 | |
dc.relation | De Oliveira AVB, Rizzato TM, Barros BCB, Favaro SL, Caetano W, Hioka N, Batistela VR (2019) Physicochemical modifications of sugarcane and cassava agro-industrial wastes for applications as biosorbents. Bioresour Technol Rep 7:100294. https://doi.org/10.1016/j.biteb.2019.100294 | |
dc.relation | Din MI, Khalid R, Najeeb J, Hussain Z (2021) Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-a critical review. J Clean Prod 298:126567. https://doi.org/10.1016/j.jclepro.2021.126567 | |
dc.relation | Dotto GL, Vieira MLG, Gonçalves JO, Pinto LADA (2011) Removal of acid blue 9, food yellow 3 and FD&C yellow nº 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin and chitosan: equilibrium studies and thermodynamic. Quim Nova 34:1193–1199. https://doi.org/10.1590/s0100-40422011000700017 | |
dc.relation | Dotto GL, Santos JMN, Rodrigues IL, Rosa R, Pavan FA, Lima EC (2015) Adsorption of methylene blue by ultrasonic surface modified chitin. J Colloid Interface Sci 446:133–140. https://doi.org/10.1016/j.jcis.2015.01.046 | |
dc.relation | Fröhlich AC, Dos Reis GS, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption. Environ Sci Pollut Res 25(25):24713–24725. https://doi.org/10.1007/s11356-018-2525-x | |
dc.relation | Gago D, Chagas R, Ferreira LM, Velizarov S, Coelhoso I (2020) A novel cellulose-based polymer for efficient removal of methylene blue. Membranes 10(1):13. https://doi.org/10.3390/membranes10010013 | |
dc.relation | Georgin J, Pinto D, Franco DS, Schadeck Netto M, Lazarotto JS, Allasia DG, Tassi R, Silva LFO, Dotto GL (2022) Improved adsorption of the toxic herbicide diuron using activated carbon obtained from residual cassava biomass (Manihot esculenta). Molecules 27(21):7574. https://doi.org/10.3390/molecules27217574 | |
dc.relation | Harrou A, Gharibi E, Nasri H, El Ouahabi M (2020) Thermodynamics and kinetics of the removal of methylene blue from aqueous solution by raw kaolin. SN Appl Sci 2(2):1–11. https://doi.org/10.1007/s42452-020-2067-y | |
dc.relation | Hassan N, Shahat A, El-Didamony A, El-Desouky MG, El-Bindary AA (2020) Mesoporous iron oxide nano spheres for capturing organic dyes from water sources. J Mol Struct 1217:128361. https://doi.org/10.1016/j.molstruc.2020.128361 | |
dc.relation | He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5(17):8796–8804. https://doi.org/10.1021/am403222u | |
dc.relation | Huang L, Zhao H, Xu H, An S, Li C, Huang C, Wang S, Liu Y, Chen J (2019) Study of 4, 4′-Methylene diisocyanate phenyl ester-modified cassava residues/polybutylene succinate biodegradable composites: preparation and performance research. Processes 7(9):588. https://doi.org/10.3390/pr7090588 | |
dc.relation | Keller M, Ambrosio E, de Oliveira VM, Góes MM, de Carvalho GM, Batistela VR, Garcia JC (2020) Polyurethane foams synthesis with cassava waste for biodiesel removal from water bodies. Bioresour Technol Rep 10:100396. https://doi.org/10.1016/j.biteb.2020.100396 | |
dc.relation | Kenawy ER, Ghfar AA, Wabaidur SM, Khan MA, Siddiqui MR, Alothman ZA, Alqadamib AA, Hamid M (2018) Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J Environ Manage 219:285–293. https://doi.org/10.1016/j.jenvman.2018.04.121 | |
dc.relation | Khan MA, Al Othman ZA, Kumar M, Ola MS, Siddique MR (2015) Biosorption potential assessment of modified pistachio shell waste for methylene blue: thermodynamics and kinetics study. Desalination Water Treat 56(1):146–160. https://doi.org/10.1080/19443994.2014.934728 | |
dc.relation | Khan MA, Alqadami AA, Otero M, Siddiqui MR, Alothman ZA, Alsohaimi I, Rafatullah M, Hamedelniel AE (2019) Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: synthesis, characterization, and adsorption studies. Chemosphere 218:1089–1099. https://doi.org/10.1016/j.chemosphere.2018.11.210 | |
dc.relation | Khan MA, Alqadami AA, Wabaidur SM, Siddiqui MR, Jeon BH, Alshareef SA, Alothman ZA, Hamedelniel AE (2020a) Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. J Hazard Mater 400:123247. https://doi.org/10.1016/j.jhazmat.2020.123247 | |
dc.relation | Khan MA, Wabaidur SM, Siddiqui MR, Alqadami AA, Khan AH (2020b) Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J Clean Prod 244:118867. https://doi.org/10.1016/j.jclepro.2019.118867 | |
dc.relation | Kiwaan HA, Mohamed FS, El-Ghamaz NA, Beshry NM, El-Bindary AA (2021a) Experimental and electrical studies of Na-X zeolite for the adsorption of different dyes. J Mol Liq 332:115877. https://doi.org/10.1016/j.molliq.2021.115877 | |
dc.relation | Kiwaan HA, Mohamed FS, El-Bindary AA, El-Ghamaz NA, Abo-Yassin HR, El-Bindary MA (2021b) Synthesis, identification and application of metal organic framework for removal of industrial cationic dyes. J Mol Liq 342:117435. https://doi.org/10.1016/j.molliq.2021.117435 | |
dc.relation | Kumar M, Dosanjh HS, Singh H (2019) Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water. Environ Nanotechnol Monit Manag 12:100237. https://doi.org/10.1016/j.enmm.2019.100237 | |
dc.relation | Leite ALMP, Zanon CD, Menegalli FC (2017) Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr Polym 157:962–970. https://doi.org/10.1016/j.carbpol.2016.10.048 | |
dc.relation | Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.relation | Liu X, Tian J, Li Y, Sun N, Mi S, Xie Y, Chen Z (2019) Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J Hazard Mater 373:397–407. https://doi.org/10.1016/j.jhazmat.2019.03.103 | |
dc.relation | Marques BS, Frantz TS, Sant’AnnaCadava Junior TR, de Almeida Pinto LA, Dotto GL (2019) Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environ Sci Pollut Res 26(28):28584–28592. https://doi.org/10.1007/s11356-018-3587-5 | |
dc.relation | Marques BS, Dalmagro K, Moreira KS, Oliveira ML, Jahn SL, De Lima Burgo TA, Dotto GL (2020) Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol. J Alloys Compd 838:155628. https://doi.org/10.1016/j.jallcom.2020.155628 | |
dc.relation | Minisy IM, Salahuddin NA, Ayad M (2021) Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl Clay Sci 203:105993. https://doi.org/10.1016/j.clay.2021.105993 | |
dc.relation | Mittal A, Naushad M, Sharma G, Alothman ZA, Wabaidur SM, Alam M (2016) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb (II) metal from aqueous medium. Desalination Water Treat 57(46):21863–21869. https://doi.org/10.1080/19443994.2015.1125805 | |
dc.relation | Mohammadzadeh A, Kadhim MM, Taban TZ, Baigenzhenov O, Ivanets A, Lal B, Kumar N, Hosseini-Bandegharaei A (2023) Adsorption performance of Enterobacter cloacae towards U (VI) ion and application of Enterobacter cloacae/carbon nanotubes to preconcentration and determination of low-levels of U (VI) in water samples. Chemosphere 311:136804. https://doi.org/10.1016/j.chemosphere.2022.136804 | |
dc.relation | Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26(6):5333–5356. https://doi.org/10.1007/s11356-018-3990-y | |
dc.relation | Olaoye RA, Afolayan OD, Adeyemi KA, Ajisope LO, Adekunle OS (2020) Adsorption of selected metals from cassava processing wastewater using cow-bone ash. Sci Afr 10:e00653. https://doi.org/10.1016/j.sciaf.2020.e00653 | |
dc.relation | Pang X, Sellaoui L, Franco D, Dotto GL, Georgin J, Bajahzar A, Belmabrouk H, Ben Lamine A, Bonilla-Petriciolet A, Li Z (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101 | |
dc.relation | Peiravi-Rivash O, Mashreghi M, Baigenzhenov O, Hosseini-Bandegharaei A (2023) Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids Surf A: Physicochem Eng Asp 656:130355. https://doi.org/10.1016/j.colsurfa.2022.130355 | |
dc.relation | Periyasamy S, Viswanathan N (2018) Hydrothermal synthesis of hydrocalumite assisted biopolymeric hybrid composites for efficient Cr (VI) removal from water. New J Chem 42(5):3371–3382. https://doi.org/10.1039/C7NJ0452G | |
dc.relation | Petzer A, Harvey BH, Wegener G, Petzer JP (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 258(3):403–409. https://doi.org/10.1016/j.taap.2011.12.005 | |
dc.relation | Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186(1):713–723. https://doi.org/10.1016/j.jhazmat.2010.11.049 | |
dc.relation | Pohndorf RS, Cadaval TRS Jr, Pinto LAA (2016) Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching. J Food Eng 185:9–16. https://doi.org/10.1016/j.jfoodeng.2016.03.028 | |
dc.relation | Ponce J, da Silva Andrade JG, dos Santos LN, Bulla MK, Barros BCB, Favaro SL, Hioka N, Caetano W, Batistela VR (2021) Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes. Carbohydr Polym Technol Appl 2:100061. https://doi.org/10.1016/j.carpta.2021.100061 | |
dc.relation | Ren F, Li Z, Tan WZ, Liu XH, Sun ZF, Ren PG, Yan DX (2018) Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J Colloid Interface Sci 532:58–67. https://doi.org/10.1016/j.jcis.2018.07.101 | |
dc.relation | Salazar-Rabago JJ, Leyva-Ramos R, Rivera-Utrilla J, Ocampo-Perez R, Cerino-Cordova FJ (2017) Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: effect of operating conditions. Sustain Environ Res 27(1):32–40. https://doi.org/10.1016/j.serj.2016.11.009 | |
dc.relation | Schadeck Netto M, da Silva NF, Mallmann ES, Dotto GL, Foletto EL (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut 230(8):1–17. https://doi.org/10.1007/s11270-019-4230-x | |
dc.relation | Scheufele FB, Staudt J, Ueda MH, Ribeiro C, Steffen V, Borba CE, Módenes AN, Kroumov AD (2020) Biosorption of direct black dye by cassava root husks: kinetics, equilibrium, thermodynamics and mechanism assessment. J Environ Chem Eng 8(2):103533. https://doi.org/10.1016/j.jece.2019.103533 | |
dc.relation | Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53(3):1108–1118. https://doi.org/10.1021/ie4027154 | |
dc.relation | Silva LDS, Carvalho JDO, Bezerra RDDS, Silva MSD, Ferreira FJL, Osajima JA, da Silva Filho EC (2018) Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules 23(4):743. https://doi.org/10.3390/molecules23040743 | |
dc.relation | Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221. https://doi.org/10.1016/j.matchemphys.2019.122221 | |
dc.relation | Udoetok IA, Dimmick RM, Wilson LD, Headley JV (2016) Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr Polym 136:329–340. https://doi.org/10.1016/j.carbpol.2015.09.032 | |
dc.relation | Vilela PB, Matias CA, Dalalibera A, Becegato VA, Paulino AT (2019) Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies. J Environ Chem Eng 7(5):103327. https://doi.org/10.1016/j.jece.2019.103327 | |
dc.relation | Wabaidur SM, Khan MA, Siddiqui MR, Otero M, Jeon BH, Alothman ZA, Hakami AAH (2020) Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite–a nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. J Mol Liq 317:113916. https://doi.org/10.1016/j.molliq.2020.113916 | |
dc.relation | Wang W, Ni J, Chen L, Ai Z, Zhao Y, Song S (2020) Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int J Biol Macromol 165:1–10. https://doi.org/10.1016/j.ijbiomac.2020.09.154 | |
dc.relation | Wu J, Yang J, Huang G, Xu C, Lin B (2020) Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J Clean Prod 251:119717. https://doi.org/10.1016/j.jclepro.2019.119717 | |
dc.relation | Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA (2022) Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: performance evaluation and optimization using BBD-RSM approach. Environ Res 209:112861. https://doi.org/10.1016/j.envres.2022.112861 | |
dc.relation | 51931 | |
dc.relation | 51920 | |
dc.relation | 30 | |
dc.rights | © 2023 Springer Nature | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s11356-023-26006-4#:~:text=From%20the%20results%20found%20in,and%20use%20eco%2Dfriendly%20biosorbents. | |
dc.subject | Alternative materials | |
dc.subject | Cationic dye | |
dc.subject | Eco-friendly materials | |
dc.subject | Emerging contaminants | |
dc.subject | Sustainable source | |
dc.title | Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |