dc.creatorOcampo Batlle, Eric Alberto
dc.creatorEscobar Palacio, José Carlos
dc.creatorSilva Lora, Electo Eduardo
dc.creatorDa Costa Bortoni, Edson
dc.creatorHorta Nogueira, Luiz Augusto
dc.creatorCarrillo Caballero, Gaylord Enrique
dc.creatorVitoriano Julio, Alisson Aparecido
dc.creatorCárdenas Escorcia, Yulineth
dc.date2021-06-29T21:43:18Z
dc.date2021-06-29T21:43:18Z
dc.date2021
dc.date.accessioned2023-10-03T19:07:55Z
dc.date.available2023-10-03T19:07:55Z
dc.identifierhttps://hdl.handle.net/11323/8441
dc.identifierhttps://doi.org/10.1016/j.jclepro.2021.127638
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168042
dc.descriptionThe key objective of this study was to evaluate and compare, within the concept of integrated biorefining, the potential environmental gains of the life cycle, economic feasibility and energy balance of the production of bioenergetics from palm and sugarcane. In this context, the research model developed in this work involved several assessment techniques; in terms of environmental assessment, the tool used was the Life Cycle Assessment (LCA) from the Well-To-Tank perspective, which is based on the LCA “cradle-to-gate” assignment method. The environmental assessment was performed using SimaPro v.8.0.3 software and the impacts were quantified using the IMPACT 2002+ method. On the other hand, energy performance evaluation was based on the 1st law indicators. Likewise, economic feasibility was based on the evaluation of the fixed capital investment index and the estimate of investment costs for the entire integrated system. Two different scenarios were proposed in order to compare and evaluate traditional systems with the integrated biorefinery. The first conversion scenario (baseline scenario) consisted of a traditional palm oil extraction plant in addition to an ethanol and sugar plant, concerning the use of fossil fuels in all stages of production. The second conversion scenario (improved scenario) explored the substitution of fossil energy sources as well as the energy recovery of residual biomass in more efficient energy conversion systems. The results indicated significant reductions of 29.5% and 29.1% in the global warming impact category when the baseline scenario was compared to the improved scenario. Additionally, the improved scenario achieved a reduction of 2.1 g CO2eq MJ−1 (ethanol) and 2.61 g CO2eq MJ−1 (biodiesel). On the other hand, the improved scenario presented better energy rates since it showed an increase of 3.82% in the global efficiency of the system and produced 106.32 kWh more per ton of processed raw material. Finally, when considering the Life Cycle Energy Efficiency, an increase of 83% was observed and in the case of the Renewability Factor showed an increase of 7.12 energy units. Integration is also economically feasible; however, it could be significantly improved through fiscal incentives founded on the reduction of fossil energy use, enhanced conversion yielding, and improvements in conversion technologies.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationH.B. Aditiya, T.M.I. Mahlia, W.T. Chong, H. Nur, A.H. Sebayang Second generation bioethanol production: a critical review Renew. Sustain. Energy Rev., 66 (2016), pp. 631-653, 10.1016/j.rser.2016.07.015
dc.relationF.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O'Hara The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery Renew. Sustain. Energy Rev., 109 (2019), pp. 386-411, 10.1016/j.rser.2019.04.009
dc.relationC.A. Alejos Altamirano, L. Yokoyama, J.L. de Medeiros, O. de Queiroz Fernandes Araújo Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment Appl. Energy, 184 (2016), pp. 1246-1263, 10.1016/j.apenergy.2016.05.017
dc.relationI. Ambat, V. Srivastava, M. Sillanpää Recent advancement in biodiesel production methodologies using various feedstock: a review Renew. Sustain. Energy Rev., 90 (2018), pp. 356-369, 10.1016/j.rser.2018.03.069
dc.relationANP 77o Leilão de Biodiesel da ANP (2021) [WWW Document]. Agência Nac. Petróleo, Gás Nat. e Biocombustíveis. URL https://www.gov.br/anp/pt-br/assuntos/distribuicao-e-revenda/leiloes-biodiesel/leiloes-entregas-2021, Accessed 3rd Mar 2021
dc.relationS.A. Archer, R.J. Murphy, R. Steinberger-Wilckens Methodological analysis of palm oil biodiesel life cycle studies Renew. Sustain. Energy Rev., 94 (2018), pp. 694-704, 10.1016/j.rser.2018.05.066
dc.relationV. Aristizábal-Marulanda, J.C. Solarte-Toro, C.A. Cardona Alzate Economic and social assessment of biorefineries: the case of Coffee Cut-Stems (CCS) in Colombia Bioresour. Technol. Rep., 9 (2020), p. 100397, 10.1016/j.biteb.2020.100397
dc.relationN.I.H.A. Aziz, M.M. Hanafiah, S.H. Gheewala A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia Biomass Bioenergy, 122 (2019), pp. 361-374, 10.1016/j.biombioe.2019.01.047
dc.relationG. Beaudry, C. Macklin, E. Roknich, L. Sears, M. Wiener, S.H. Gheewala Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective Biomass Convers. Bioref., 8 (2018), pp. 43-58, 10.1007/s13399-016-0233-7
dc.relationS. Bezergianni, L.P. Chrysikou Application of Life-Cycle Assessment in Biorefineries, Waste Biorefinery Elsevier B.V (2020), 10.1016/b978-0-12-818228-4.00017-4
dc.relationP. Booneimsri, K. Kubaha, C. Chullabodhi Increasing power generation with enhanced cogeneration using waste energy in palm oil mills Energy Sci. Eng., 6 (2018), pp. 154-173, 10.1002/ese3.196
dc.relationF. Brandão, G. Schoneveld The State of Oil Palm Development in the Brazilian Amazon: Trends, Value Chain Dynamics, and Business Models (No. 198) (2015), 10.17528/cifor/005861 Bogor
dc.relationJ.M. Bressanin, B.C. Klein, M.F. Chagas, M.D.B. Watanabe, I.L. de M. Sampaio, A. Bonomi, E.R. de Morais, O. Cavalett Techno-economic and environmental assessment of biomass Gasification and fischer–tropsch synthesis integrated to sugarcane biorefineries Energies, 13 (2020), p. 4576, 10.3390/en13174576
dc.relationM. Brito, J. Buecke Agropalma: Relatório de Sustentabilidade 2015 Agropalma, Belém (2015)
dc.relationA. Bušić, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M.I. Šantek, D. Komes, S. Novak, B. Šantek Bioethanol production from renewable raw materials and its separation and purification: a review Food Technol. Biotechnol., 56 (2018), pp. 289-311, 10.17113/ftb.56.03.18.5546
dc.relationCCEE Informação Do Leilão Dinânimo (2021) [WWW Document]. Câmara Comer. Energ. Elétrica. URL https://www.ccee.org.br/, Accessed 3rd Mar 2021
dc.relationCEPEA Indicador mensal ethanol hidratado CEPEA/ESALQ combustível - estado de São paulo [WWW Document]. Cent. Estud. Avançados em Econ. Apl. URL http://cepea.esalq.usp.br/etanol/ (2021), Accessed 3rd Mar 2021
dc.relationChemical Engineering Magazine Current Economic Trends CEPCI (2019) [WWW Document]. URL https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/, Accessed 3rd Mar 2021
dc.relationH. Chen Lignocellulose Biorefinery Engineering (first ed.) (2015)
dc.relationJ. Chen, X. Bian, G. Rapp, J. Lang, A. Montoya, R. Trethowan, B. Bouyssiere, J.-F. Portha, J.-N. Jaubert, P. Pratt, L. Coniglio From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy Ind. Crop. Prod., 137 (2019), pp. 597-614, 10.1016/j.indcrop.2019.04.041
dc.relationL.P. Chrysikou, S. Bezergianni, C. Kiparissides Environmental analysis of a lignocellulosic-based biorefinery producing bioethanol and high-added value chemicals Sustain. Energy Technol. Assess., 28 (2018), pp. 103-109, 10.1016/j.seta.2018.06.010
dc.relationConab Acompanhamento da Safra Brasileira da Cana-de-açúcar (2018) https://www.conab.gov.br/info-agro/safras/cana
dc.relationA. Corona, R. Parajuli, M. Ambye-Jensen, M.Z. Hauschild, M. Birkved Environmental screening of potential biomass for green biorefinery conversion J. Clean. Prod., 189 (2018), pp. 344-357, 10.1016/j.jclepro.2018.03.316
dc.relationL.A.B. Cortez, F.E.B. Nigro, L.A.H. Nogueira, A.M. Nassar, H. Cantarella, M.A.F.D. Moraes, R.L.V. Leal, T.T. Franco, U.F. Schuchardt, R. Baldassin Junior Perspectives for sustainable aviation biofuels in Brazil Int. J. Aerosp. Eng., 1–12 (2015), 10.1155/2015/264898
dc.relationD. Debnath, S.C. Babu Biofuels, Bioenergy and Food Security (first ed.), Elsevier (2019), 10.1016/C2015-0-00851-6
dc.relationF. Demichelis, M. Laghezza, M. Chiappero, S. Fiore Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass J. Clean. Prod., 277 (2020), p. 124111, 10.1016/j.jclepro.2020.124111
dc.relationM.O. de S. Dias, R. Maciel Filho, P.E. Mantelatto, O. Cavalett, C.E.V. Rossell, A. Bonomi, M.R.L.V. Leal Sugarcane processing for ethanol and sugar in Brazil Environ. Dev., 15 (2015), pp. 35-51, 10.1016/j.envdev.2015.03.004
dc.relationEPE Análise de conjuntura dos biocombustíveis: ano 2019 (2019) [WWW Document]. Empres. Pesqui. Energética. URL https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/analise-de-conjuntura-dos-biocombustiveis-2019, Accessed 3rd Mar 2021
dc.relationS. Farzad, M.A. Mandegari, M. Guo, K.F. Haigh, N. Shah, J.F. Görgens Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol. Biofuels, 10 (2017), p. 87, 10.1186/s13068-017-0761-9
dc.relationU.R. Fritsche, R. Diaz-Chavez, C. de la Rúa, B. Gabriel, A. Perrin Sustainability of bioenergy The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy (2018), pp. 225-296, 10.1016/B978-0-12-813056-8.00006-6
dc.relationJ.C. Furtado Júnior, J.C.E. Palacio, R.C. Leme, E.E.S. Lora, J.E.L. da Costa, A.M.M. Reyes, O.A. del Olmo Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry Appl. Energy, 259 (2020), p. 113092, 10.1016/j.apenergy.2019.04.088
dc.relationJ.A. Garcia-Nunez, D.T. Rodriguez, C.A. Fontanilla, N.E. Ramirez, E.E. Silva Lora, C.S. Frear, C. Stockle, J. Amonette, M. Garcia-Perez Evaluation of alternatives for the evolution of palm oil mills into biorefineries Biomass Bioenergy, 95 (2016), pp. 310-329, 10.1016/j.biombioe.2016.05.020
dc.relationS.N. Gebremariam, J.M. Marchetti Economics of biodiesel production: Review Energy Convers. Manag., 168 (2018), pp. 74-84, 10.1016/j.enconman.2018.05.002
dc.relationGikonyo Efficiency and Sustainability in Biofuel Production (first ed.), Apple Academic Press (2015), 10.1201/b18466
dc.relationL.A. Hadidi, Q.M. Altamimi 3E (energy, economic, and environmental) analysis of waste management strategies Advances in Waste-To-Energy Technologies, CRC Press (2019), p. 13
dc.relationZ.M. Harris, S. Milner, G. Taylor Biogenic carbon—capture and sequestration Greenhouse Gases Balances of Bioenergy Systems, Elsevier (2018), pp. 55-76, 10.1016/B978-0-08-101036-5.00005-7
dc.relationM. Hingsamer, G. Jungmeier Biorefineries, the Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy Elsevier Inc (2018), 10.1016/B978-0-12-813056-8.00005-4
dc.relationF. Hosseini-Fashami, A. Motevali, A. Nabavi-Pelesaraei, S.J. Hashemi, K. wing Chau Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production Renew. Sustain. Energy Rev., 116 (2019), p. 109411, 10.1016/j.rser.2019.109411
dc.relationIEA Bioenergy Task 42 Bioref. Fut. BioEcon., 1–23 (2019)
dc.relationISO 14040, 2006 Environmental management - Life Cycle Assessment - Principles and Framework (2006)
dc.relationO. Jolliet, M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, R. Rosenbaum Impact 2002+: a new life cycle impact assessment methodology Int. J. Life Cycle Assess., 8 (2003), pp. 324-330, 10.1007/BF02978505
dc.relationA.A.V. Julio, E.A.O. Batlle, C.J.C. Rodriguez, J.C.E. Palacio Exergoeconomic and Environmental Analysis of a Palm Oil Biorefinery for the Production of Bio-Jet Fuel, vol. 27, Waste and Biomass Valorization Pag (2021), 10.1007/s12649-021-01404-2
dc.relationA. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production Energy, 181 (2019), pp. 1298-1320, 10.1016/j.energy.2019.06.002
dc.relationA. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production Sci. Total Environ., 664 (2019), pp. 1005-1019, 10.1016/j.scitotenv.2019.02.004
dc.relationL.K. Kaushik, P. Muthukumar Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner Appl. Therm. Eng., 133 (2018), pp. 316-326, 10.1016/j.applthermaleng.2018.01.050
dc.relationM. Khanali, A. Akram, J. Behzadi, F. Mostashari-Rad, Z. Saber, K. wing Chau, A. Nabavi-Pelesaraei Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm Appl. Energy, 284 (2021), p. 116342, 10.1016/j.apenergy.2020.116342
dc.relationB. Khoshnevisan, M. Tabatabaei, P. Tsapekos, S. Rafiee, M. Aghbashlo, S. Lindeneg, I. Angelidaki Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid Renew. Sustain. Energy Rev., 117 (2020), p. 109493, 10.1016/j.rser.2019.109493
dc.relationB.C. Klein, M.F. Chagas, T.L. Junqueira, M.C.A.F. Rezende, T. de F. Cardoso, O. Cavalett, A. Bonomi Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries Appl. Energy, 209 (2018), pp. 290-305, 10.1016/j.apenergy.2017.10.079
dc.relationO.-M. Lai, C.-P. Tan, C.C. Akoh Palm Oil: Production, Processing, Characterization, and Uses (first ed.), Elsevier, New York (2012)
dc.relationLAPIG Atlas das Pastagens Brasileiras (2020) [WWW Document]. Laboratório Process. Imgens e Geoprocessamento. URL https://pastagem.org/atlas/map, Accessed 28th Jul 2020
dc.relationM.R.L.V. Leal, M.V. Galdos, F.V. Scarpare, J.E.A. Seabra, A. Walter, C.O.F. Oliveira Sugarcane straw availability, quality, recovery and energy use: a literature review Biomass Bioenergy, 53 (2013), pp. 11-19, 10.1016/j.biombioe.2013.03.007
dc.relationK.T. Lee, C. Ofori-Boateng Sustainability of Biofuel Production from Oil Palm Biomass (first ed.) (2013), 10.1007/978-981-4451-70-3 Malaysia
dc.relationS.G. Maham, A. Rahimi, D.L. Smith Environmental assessment of the essential oils produced from dragonhead (Dracocephalum moldavica L.) in conventional and organic farms with different irrigation rates J. Clean. Prod., 204 (2018), pp. 1070-1086, 10.1016/j.jclepro.2018.08.348
dc.relationC.S. Mahath, K. Mophin Kani, B. Dubey Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India Resour. Conserv. Recycl., 141 (2019), pp. 40-53, 10.1016/j.resconrec.2018.09.023
dc.relationC. Manochio, B. Andrade, R. Rodriguez, B. Moraes Ethanol from biomass: a comparative overview Renew. Sustain. Energy Rev., 80 (2017), pp. 743-755, 10.1016/j.rser.2017.05.063
dc.relationM.H. Mat Yasin, R. Mamat, G. Najafi, O.M. Ali, A.F. Yusop, M.H. Ali Potentials of palm oil as new feedstock oil for a global alternative fuel: a review Renew. Sustain. Energy Rev., 79 (2017), pp. 1034-1049, 10.1016/j.rser.2017.05.186
dc.relationT.M. Mata, A.A. Martins, S.K. Sikdar, C.A.V. Costa Sustainability considerations of biodiesel based on supply chain analysis Clean Technol. Environ. Policy, 13 (2011), pp. 655-671, 10.1007/s10098-010-0346-9
dc.relationF. Mohammadi, A. Roedl, M.A. Abdoli, M. Amidpour, H. Vahidi Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry Renew. Energy, 145 (2020), pp. 1870-1882, 10.1016/j.renene.2019.06.023
dc.relationH. Monteiro, B. Moura, M. Iten, T.M. Mata, A.A. Martins Life cycle energy and carbon emissions of ergosterol from mushroom residues Energy Rep., 6 (2020), pp. 333-339, 10.1016/j.egyr.2020.11.157
dc.relationF. Mostashari-Rad, H. Ghasemi-Mobtaker, M. Taki, M. Ghahderijani, A. Kaab, K. wing Chau, A. Nabavi-Pelesaraei Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks J. Clean. Prod., 278 (2021), p. 123788, 10.1016/j.jclepro.2020.123788
dc.relationM. Munasinghe, P. Jayasinghe, Y. Deraniyagala, V.J. Matlaba, J.F. dos Santos, M.C. Maneschy, J.A. Mota Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability Sustain. Prod. Consum., 17 (2019), pp. 161-175, 10.1016/j.spc.2018.10.001
dc.relationA. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha, H. Afrasyabi, K. wing Chau Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran J. Clean. Prod., 148 (2017), pp. 427-440, 10.1016/j.jclepro.2017.01.172
dc.relationM. Nieder-Heitmann, K.F. Haigh, J.F. Görgens Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the South African sugar industry J. Clean. Prod., 239 (2019), 10.1016/j.jclepro.2019.118039
dc.relationL.A.H. Nogueira, G.M. Souza, L.A.B. Cortez, C.H. de Brito Cruz Biofuels for transport Future Energy: Improved, Sustainable and Clean Options for Our Planet, Elsevier Ltd (2020), pp. 173-197, 10.1016/B978-0-08-102886-5.00009-8
dc.relationI.M. O'Hara, S.G. Mundree Sugarcane-based biofuels and bioproducts Sugarcane-based Biofuels and Bioproducts (first ed.) (2016), 10.1002/9781118719862 New Jersey
dc.relationE.A. Ocampo Batlle, Y. Castillo Santiago, O.J. Venturini, J.C. Escobar Palacio, E.E. Silva Lora, D.M. Yepes Maya, A.R. Albis Arrieta Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries J. Clean. Prod., 250 (2020), p. 119544, 10.1016/j.jclepro.2019.119544
dc.relationE.I. Ohimain, S.C. Izah A review of biogas production from palm oil mill effluents using different configurations of bioreactors Renew. Sustain. Energy Rev., 70 (2017), pp. 242-253, 10.1016/j.rser.2016.11.221
dc.relationJ.C.E. Palacio, E.A. Ocampo, M.L.G. Renó, A.M.M. Reyes, G.F. de Souza, O.A.A. del Olmo, E.E.S. Lora Exergy and environmental analysis of a polygeneration system of alcohol industry Waste Biomass Valoriz. (2018), p. 16, 10.1007/s12649-018-0509-1
dc.relationL.G. Pereira, O. Cavalett, A. Bonomi, Y. Zhang, E. Warner, H.L. Chum Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat Renew. Sustain. Energy Rev., 110 (2019), pp. 1-12, 10.1016/j.rser.2019.04.043
dc.relationL.G. Pereira, M.F. Chagas, M.O.S. Dias, O. Cavalett, A. Bonomi Life cycle assessment of butanol production in sugarcane biorefineries in Brazil J. Clean. Prod., 96 (2015), pp. 557-568, 10.1016/j.jclepro.2014.01.059
dc.relationS. de S. Pereira, J.E.A. Seabra, L.A.H. Nogueira Feedstocks for biodiesel production: Brazilian and global perspectives Biofuels, 9 (2018), pp. 455-478, 10.1080/17597269.2017.1278931
dc.relationA.G. Queiroz, L. França, M.X. Ponte The life cycle assessment of biodiesel from palm oil (“ dendê”) in the Amazon Biomass Bioenergy, 36 (2012), pp. 50-59, 10.1016/j.biombioe.2011.10.007
dc.relationN.E. Ramirez-Contreras, D.A. Munar-Florez, J.A. Garcia-Nuñez, M. Mosquera-Montoya, A.P.C. Faaij The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives J. Clean. Prod., 258 (2020), p. 120757, 10.1016/j.jclepro.2020.120757
dc.relationREN21 Renewables 2018: global status report (2018) 978-3-9818107-0-7
dc.relationM.L.G. Renó, O.A. del Olmo, J.C.E. Palacio, E.E.S. Lora, O.J. Venturini Sugarcane biorefineries: case studies applied to the Brazilian sugar–alcohol industry Energy Convers. Manag., 86 (2014), pp. 981-991, 10.1016/j.enconman.2014.06.031
dc.relationM.H. Rocha, R.S. Capaz, E.E.S. Lora, L.A.H. Nogueira, M.M.V. Leme, M.L.G. Renó, O.A. Del Olmo Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis Renew. Sustain. Energy Rev., 37 (2014), pp. 435-459, 10.1016/j.rser.2014.05.036
dc.relationZ. Saber, M. Esmaeili, H. Pirdashti, A. Motevali, A. Nabavi-Pelesaraei Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production J. Clean. Prod., 263 (2020), p. 121529, 10.1016/j.jclepro.2020.121529
dc.relationF.H. Salina, I.A. de Almeida, F.R. Bittencourt RenovaBio opportunities and biofuels outlook in Brazil Renewable Energy and Sustainable Buildings, Springer, Cham (2020), pp. 391-399, 10.1007/978-3-030-18488-9_30
dc.relationF. Santos, A. Borém, C. Caldas Sugarcane: Agricultural Production, Bioenergy and Ethanol (first ed.), Elsevier. Academic Press, Brasilia (2015)
dc.relationA.P. Saravanan, A. Pugazhendhi, T. Mathimani A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps Fuel, 272 (2020), p. 117635, 10.1016/j.fuel.2020.117635
dc.relationS.R. Sharvini, Z.Z. Noor, C.S. Chong, L.C. Stringer, D. Glew Energy generation from palm oil mill effluent: a life cycle assessment of two biogas technologies Energy, 191 (2020), p. 116513, 10.1016/j.energy.2019.116513
dc.relationW.L.G. da Silva, P.T. de Souza, G.G. Shimamoto, M. Tubino Separation of the Glycerol-biodiesel phases in an ethyl transesterification synthetic route using water J. Braz. Chem. Soc. (2015), 10.5935/0103-5053.20150147
dc.relationA. Singh, D. Pant, S.I. Olsen Life Cycle Assessment of Renewable Energy Sources Springer London (2013), 10.1007/978-1-4471-5364-1
dc.relationE.K. Sitepu, K. Heimann, C.L. Raston, W. Zhang Critical evaluation of process parameters for direct biodiesel production from diverse feedstock Renew. Sustain. Energy Rev., 123 (2020), p. 109762, 10.1016/j.rser.2020.109762
dc.relationC.C. De Souza, J.P. Leandro, J. Francisco, D.M. Frainer, R.A. Castelão Cogeneration of electricity in sugar-alcohol plant : perspectives and viability Renew. Sustain. Energy Rev., 91 (2018), pp. 832-837, 10.1016/j.rser.2018.04.047
dc.relationS.P. Souza, M.T. de Ávila, S. Pacca Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production Biomass Bioenergy, 44 (2012), pp. 70-79, 10.1016/j.biombioe.2012.04.018
dc.relationJ.G. Speight A Biorefinery, the Refinery of the Future (2020), 10.1016/b978-0-12-816994-0.00014-2
dc.relationU. Suwanmanee, T. Bangjang, A. Kaewchada, A. Jaree Greenhouse gas emissions and energy assessment of modified diesohol using cashew nut shell liquid and biodiesel as additives Sustain. Prod. Consum., 24 (2020), pp. 232-253, 10.1016/j.spc.2020.06.009
dc.relationY.D. Tan, J.S. Lim, S.R. Wan Alwi Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination Energy, 202 (2020), 10.1016/j.energy.2020.117767
dc.relationI. Tsiropoulos, A.P.C. Faaij, J.E.A. Seabra Life Cycle Assessment of Sugarcane Ethanol Production in India in Comparison to Brazil, Springer (2014), pp. 1049-1067, 10.1007/s11367-014-0714-5
dc.relationU.S. EIA Capital Cost Estimates for Utility Scale Electricity Generating Plants (2016)
dc.relationU.S. Energy Information Administration International Energy Outlook 2018, Energy Information Administration - EIA (2018) Washintong, DC https://www.eia.gov/outlooks/archive/ieo18/
dc.relationP. Vaskan, E.R. Pachón, E. Gnansounou Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil J. Clean. Prod., 172 (2018), pp. 3655-3668, 10.1016/j.jclepro.2017.07.218
dc.relationM.C. Vásquez, A. Martínez, E.F. Castillo, E.E. Silva Holistic approach for sustainability enhancing of hydrotreated aviation biofuels, through life cycle assessment: a Brazilian case study J. Clean. Prod., 237 (2019), 10.1016/j.jclepro.2019.117796
dc.relationO.J. Venturini, J.C.F. Júnior, J.C.E. Palacio, E.A.O. Batlle, M. Carvalho, E.E.S. Lora Indicators for sustainability assessment of biofuels: economic, environmental, social, and technological dimensions Biofuels for a More Sustainable Future, Elsevier (2020), pp. 73-113, 10.1016/B978-0-12-815581-3.00004-X
dc.relationP. Verma, M.P. Sharma, G. Dwivedi Impact of alcohol on biodiesel production and properties Renew. Sustain. Energy Rev., 56 (2016), pp. 319-333, 10.1016/j.rser.2015.11.048
dc.relationS. Verma, A. Kuila Principles of sustainable biorefinery Biorefinery Production Technologies for Chemicals and Energy, Wiley (2020), pp. 1-13, 10.1002/9781119593065.ch1
dc.relationM.A. Vieira da Silva, B. Lagnier Gil Ferreira, L.G. da Costa Marques, A. Lamare Soares Murta, M.A. Vasconcelos de Freitas Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes Fuel, 194 (2017), pp. 144-156, 10.1016/j.fuel.2016.12.084
dc.relationJ.-L. Wertz, O. Bédué Lignocellulosic Biorefineries (first ed.), CRC Press. EFPL Press (2013), 10.1201/b15443-4
dc.relationM.F.M. Yusoff, X. Xu, Z. Guo Comparison of fatty acid methyl and ethyl Esters as biodiesel base stock: a review on processing and production requirements J. Am. Oil Chem. Soc., 91 (2014), pp. 525-531, 10.1007/s11746-014-2443-0
dc.relationS.B. Živković, M.V. Veljkovi, I.B. Bankovi, I.M. Krsti, S. Konstantinovi, S.B. Ili, J.M. Avramovi, O.S. Stamenkovi Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use Renew. Sustain. Energy Rev., 79 (2017), pp. 222-247, 10.1016/j.rser.2017.05.048
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Cleaner Production
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0959652621018564
dc.subjectIntegrated biofuel production
dc.subjectBiorefinery
dc.subjectEnergy performance
dc.subjectSustainability
dc.subjectEnvironmental impacts
dc.titleEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución