El valor de Shapley: sus algoritmos y aplicación en cadenas de suministro

dc.creatorLandinez-Lamadrid, Daniela C.
dc.creatorRamirez-Ríos, Diana G.
dc.creatorNeira Rodado, Dionicio
dc.creatorParra Negrete, Kevin Armando
dc.creatorCombita Niño, Johana Patricia
dc.date2019-02-14T00:48:37Z
dc.date2019-02-14T00:48:37Z
dc.date2017-01-01
dc.date.accessioned2023-10-03T19:07:48Z
dc.date.available2023-10-03T19:07:48Z
dc.identifierD.C. Landinez-Lamadrid, D. G. Ramirez-Ríos, D. Neira Rodado, K. Parra Negrete and J.P. Combita Niño “Shapley Value: its algorithms and application to supply chains,” INGE CUC, vol. 13, no. 1, pp. 61-69, 2017. DOI: http://dx.doi.org/10.17981/ingecuc.13.1.2017.06
dc.identifierhttp://hdl.handle.net/11323/2482
dc.identifierhttps://doi.org/10.17981/ingecuc.13.1.2017.06
dc.identifier10.17981/ingecuc.13.1.2017.06
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168013
dc.descriptionIntroduction− Coalitional game theorists have studied the coalition struc-ture and the payoff schemes attributed to such coalition. With respect to the payoff value, there are number ways of obtaining to “best” distribution of the value of the game. The solution concept or payoff value distribution that is canonically held to fairly dividing a coalition’s value is called the Shapley Value. It is probably the most important regulatory payoff scheme in coali-tion games. The reason the Shapley value has been the focus of so much interest is that it represents a distinct approach to the problems of complex strategic interaction that game theory tries to solve. Objective−This study aims to do a brief literature review of the application of Shapley Value for solving problems in different cooperation fields and the importance of studying existing methods to facilitate their calculation. This review is focused on the algorithmic view of cooperative game theory with a special emphasis on supply chains. Additionally, an algorithm for the calcu-lation of the Shapley Value is proposed and numerical examples are used in order to validate the proposed algorithm. Methodology−First of all, the algorithms used to calculate Shapley value were identified. The element forming a supply chain were also identified. The cooperation between the members of the supply chain ways is simulated and the Shapley Value is calculated using the proposed algorithm in order to check its applicability. Results and Conclusions− The algorithmic approach introduced in this paper does not wish to belittle the contributions made so far but intends to provide a straightforward solution for decision problems that involve supply chains. An efficient and feasible way of calculating the Shapley Value when player structures are known beforehand provides the advantage of reducing the amount of effort in calculating all possible coalition structures prior to the Shapley.
dc.descriptionIntroducción: Los teóricos del juego cooperativos han estudiado la estructura de coalición y los esquemas de pago atribuidos a esas coaliciones. En relación al valor del pago, hay varias maneras de obtener la “mejor” distribución del valor del juego. El concepto de solución o la distribución del valor de recompensa que se mantiene canónicamente para dividir justamente el valor de una coalición se llama Valor de Shapley. Es probablemente el esquema de pago más importante en los juegos cooperativos. La razón por la cual el valor de Shapley ha sido el foco de tanto interés es que representa un acercamiento distinto a los problemas de la interacción estratégica compleja que la teoría del juego intenta resolver.Objetivo: Este estudio tiene como objetivo hacer una breve revisión bibliográfica de la aplicación del Valor de Shapley para resolver problemas en diferentes campos de cooperación y la importancia de estudiar los métodos existentes para facilitar su cálculo. Esta revisión se centra en la visión algorítmica de la teoría cooperativa de juegos con un énfasis especial en las cadenas de suministro. Adicionalmente se propone un algoritmo para el cálculo del Valor de Shapley y se utilizan ejemplos numéricos para validar el algoritmo propuesto.Metodología: En primer lugar, se identificaron los algoritmos utilizados para calcular el valor de Shapley. También se identificó los elementos que forman una cadena de suministro. Luego se simula la cooperación entre los miembros de las vías de la cadena de suministro y se calcula el valor de Shapley utilizando el algoritmo propuesto para comprobar su aplicabilidad.Resultados y Conclusiones: El enfoque algorítmico introducido en este documento no pretende menospreciar las contribuciones hechas hasta ahora, pero tiene la intención de proporcionar una solución directa para problemas de decisión que involucran cadenas de suministro. Una manera eficiente y factible de calcular el valor de Shapley cuando las estructuras de jugador se conocen de antemano proporciona la ventaja de reducir la cantidad de esfuerzo en el cálculo de todas las estructuras de coalición posibles antes del Shapley.
dc.format9 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 13, Núm. 1 (2017)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] D. Neira Rodado, J. W. Escobar, R. G. García-Cáceres and N. A. Andrés, "A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand," International Journal of Industrial Engineering Computations, no. 8, pp. 237-250, 2017.
dc.relation[2] A. Baykasoğlu and B. K. Özbel, "Cooperative interval game theory and the grey Shapley value approach for solving the maximun flow problem," in XIV International Logistics and Supply Chain Congress, Izmir, Turkey , 2016.
dc.relation[3] A. Fréchette, L. Kotthoff, T. P. Michalak, T. Rahwan, H. H. Hoos and K. Leyton-Brown, "Using the Shapley Value to Analyze Algorithm Portfolios," AAAI, pp. 3397-3403, 2016.
dc.relation[4] A. Owen and C. Prieur, "On Shapley value for measuring importance of dependent inputs," 2016.
dc.relation[5] T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran and N. R. Jennings, "Efficient computation of the Shapley value for game-theoretic network centrality," Journal of Artificial Intelligence Research, vol. 46, pp. 607-650, 2013.
dc.relation[6] R. Aumann and R. Myerson, "Endogenous formation of links between players and coalitions: an application of the Shapley value," in The Shapley Value, Cambridge University, 1988, pp. 175-191.
dc.relation[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.
dc.relation[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.
dc.relation[8] W. Yu, C. Dong-mei and Z. Xiao-min, "Study on mechanism of profit allocation in virtual enterprise based on shapley value considering harmony degree," in 16th International Conference on Industrial Engineering and Engineering Management, IE&EM'09, Beijing, China, 2009.
dc.relation[9] B. Xin-zhong and L. Xiao-fei, "Cost Allocation of Integrated Supply Based on Shapley Value Method," in International Conference on Intelligent Computation Technology and Automation (ICICTA), Beijing, China, 2010.
dc.relation[10] S. Yu, Y. M. Wei and K. Wang, "Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, vol. 66, pp. 630-644, 2014.
dc.relation[11] Z. Liao, X. Zhu and J. Shi, "Case study on initial allocation of Shanghai carbon emission trading based on Shapley value," Journal of Cleaner Production, vol. 103, pp. 338-344, 2015.
dc.relation[12] H. Sheng and H. Shi, "Research on Cost Allocation Model of Telecom Infrastructure Co-construction Based on Value Shapley Algorithm," International Journal of Future Generation Communication and Networking, vol. 9, no. 7, pp. 165-172, 2016.
dc.relation[13] G. Chalkiadakis, E. Elkind and M. Wooldridge, "Cooperative game theory: Basic concepts and computational challenges," IEEE Intelligent Systems, vol. 3, pp. 86-9, 2012.
dc.relation[14] Y. Li and V. Conitzer, "Cooperative Game Solution Concepts that Maximize Stability under Noise," AAAI, pp. 979-985, 2015.
dc.relation[15] G. Owen, Game Theory, 3rd Edition ed. ed., San Diego: Academic Press, 1995, p. 192.
dc.relation[16] S. R. Dabbagh and M. K. Sheikh-El-Eslami, "Risk-based profit allocation to DERs integrated with a virtual power plant using cooperative Game theory," Electric Power Systems Research, vol. 121, pp. 368-378, 2015.
dc.relation[17] B. Xinzhong, W. Yanfang and S. Ying, "Cost allocation model and its solution about inter-organizational cooperation based on game theory," in 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 2011.
dc.relation[18] S. S. Fatima, M. Wooldridge and N. R. Jennings, "A linear approximation method for the Shapley value," Artificial Intelligence, vol. 172, no. 14, pp. 1673-1699, 2008.
dc.relation[19] H. Hong and W. Yanhong, "The optimization study on profit allocation among partners in supply chain alliance based on the Shapley Value," in Control and Decision Conference, Yantai, Shandong, China, 2008.
dc.relation[20] S. Kim, "Cooperative game theoretic routing algorithm based on Shapley-value approach," in Proceedings of the 23rd international conference on Information Networking, Osaka, Japon, 2009.
dc.relation[21] Y. Chao-hui, "Using Modified Shapley Value to Determine Revenue Allocation within Supply Chain," in International Conference on Information Management, Innovation Management and Industrial Engineering, Xi'an, China, 2009.
dc.relation[22] D. H. Cui, L. Yao and R. Yang, "An algorithm for improving Shapley Value method for time claim in concurrent delay," in International Conference Logistics Systems and Intelligent Management, Harbin, China, 2010.
dc.relation[23] W. Xu, Z. Yang and H. Wang, "A Shapley value perspective on profit allocation for RFID technology alliance," in 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing, China, 2014.
dc.relation[24] F. J. Muros, J. M. Maestre, E. Algaba, T. Alamo and E. F. Camacho, "An algorithm with low computational requirements to constrain the Shapley value in coalitional networks.," in Control and Automation (MED), 2015.
dc.relation[25] J. Castro, D. Gómez, E. Molina and J. Tejada, "Improving Polynomial estimation of the Shapley value by stratified random sampling with optimum allocation," Computers & Operations Research, 2017.
dc.relation[26] D. G. Ramirez-Rios, N. Puello-Pereira, J. Ferro-Correa and S. Sankar Sana, "A cooperative game approach applied to the furniture supply chain of clusters for improving its competitive value: a case study," Control and Cybernetics, vol. 46, no. 1, 2016.
dc.relation60
dc.relation53
dc.relation1
dc.relation13
dc.relationINGE CUC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1495
dc.subjectJuegos cooperativos
dc.subjectValor de Shapley
dc.subjectCadena de suministro
dc.subjectCompetitividad
dc.subjectClúster
dc.subjectCooperative games
dc.subjectShapley value
dc.subjectSupply chain
dc.subjectCompetitiveness
dc.titleShapley value: its algorithms and application to supply chains
dc.titleEl valor de Shapley: sus algoritmos y aplicación en cadenas de suministro
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución