dc.creator | Ahmad, Tauqir | |
dc.creator | Saood Manzar, Mohammad | |
dc.creator | georgin, jordana | |
dc.creator | Dison S.P., Franco | |
dc.creator | Khan, Sardaraz | |
dc.creator | Meili, Lucas | |
dc.creator | Ullah, Nisar | |
dc.date | 2023-09-07T16:33:17Z | |
dc.date | 2025 | |
dc.date | 2023-09-07T16:33:17Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:06:28Z | |
dc.date.available | 2023-10-03T19:06:28Z | |
dc.identifier | Tauqir Ahmad, Mohammad Saood Manzar, Jordana Georgin, Dison S.P. Franco, Sardaraz Khan, Lucas Meili, Nisar Ullah,
Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water, Journal of Water Process Engineering, Volume 53, 2023, 103623, ISSN 2214-7144,
https://doi.org/10.1016/j.jwpe.2023.103623 | |
dc.identifier | https://hdl.handle.net/11323/10456 | |
dc.identifier | 10.1016/j.jwpe.2023.103623 | |
dc.identifier | 2214-7144 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167756 | |
dc.description | Bisphenol A (BPA) is a diphenylmethane derivative often used as a building block of polycarbonate in the production of plastic and plastic additives. Different sectors of the chemical industry release daily high concentrations of BPA in treatment plants, leading to polluting the environment. Due to chemical characteristics, BPA is considered highly toxic to animals and humans health. Adsorption is considered one of the promising techniques for the removal of BPA from water. In this study, we report the synthesis of a new polyamine-isocyanurate-based hyper crosslinked resin (ICYAN-PA) for the adsorptive removal of BPA from aqueous solution. The porous resin showed good thermal stability with a surface marked by smooth porous layers covered by particles of different sizes. The resin exhibited optimum removal of BPA at pH 5, with an adsorption capacity of 260 mg g−1. The isothermal studies suggested that adsorption was favored with increasing temperature (318 K). The Koble-Corrigan model was more adequate to represent the isothermal data. Moreover, the adsorption process was favorable, spontaneous, and endothermic (ΔH0 = 50.9 kJ mol−1). Furthermore, the magnitude of ΔH° was compatible with physical adsorption. The kinetic profiles indicated that the adsorption equilibrium was attained in <180 min of contact time, and the pseudo-first order model best represented the kinetic data. Given the relatively fast kinetics and high thermal stability (Td < 220 °C), ICYAN-PA holds a promise in the decontamination of effluents containing BPA. | |
dc.format | 12 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier Ltd. | |
dc.publisher | United Kingdom | |
dc.relation | Journal of Water Process Engineering | |
dc.relation | [1] A. Waheed, N. Baig, N. Ullah, W. Falath, Removal of hazardous dyes, toxic metal
ions and organic pollutants from wastewater by using porous hyper-cross-linked
polymeric materials: a review of recent advances, J. Environ. Manag. 287 (Jun.
2021), https://doi.org/10.1016/j.jenvman.2021.112360. | |
dc.relation | [2] T. Ahmad, S. Khan, T. Rasheed, N. Ullah, Graphitic carbon nitride nanosheets as
promising candidates for the detection of hazardous contaminants of
environmental and biological concern in aqueous matrices, Microchim. Acta 189
(11) (Oct. 2022) 1–28, https://doi.org/10.1007/s00604-022-05516-x. | |
dc.relation | [3] M. Saood Manzar, et al., Comparative adsorption of Eriochrome Black T and
Tetracycline by NaOH-modified steel dust: kinetic and process modeling, Sep.
Purif. Technol. 287 (Apr. 2022), 120559, https://doi.org/10.1016/j.
seppur.2022.120559. | |
dc.relation | [4] T. Ahmad, A. Waheed, S. Abdel-Azeim, S. Khan, N. Ullah, Three new turn-on
fluorescent sensors for the selective detection of Zn2+: synthesis, properties and
DFT studies, Arab. J. Chem. 15 (8) (Aug. 2022), 104002, https://doi.org/10.1016/
j.arabjc.2022.104002. | |
dc.relation | [5] A. Waheed, T. Ahmad, M. Haroon, N. Ullah, A highly sensitive and selective
fluorescent sensor for Zinc(II) ions based on a 1,2,3-triazolyl-functionalized 2,2’-
dipicolylamine (DPA), ChemistrySelect 5 (17) (May 2020) 5300–5305, https://doi.
org/10.1002/slct.202000928. | |
dc.relation | [6] T. Ahmad, S. Abdel-Azeim, S. Khan, N. Ullah, Turn-on fluorescent sensors for
nanomolar detection of zinc ions: synthesis, properties and DFT studies, J. Taiwan
Inst. Chem. Eng. 139 (Oct. 2022), 104507, https://doi.org/10.1016/j.
jtice.2022.104507. | |
dc.relation | [7] T. Ahmad, M. Mansha, I.W. Kazi, A. Waheed, N. Ullah, Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for
efficient removal of cationic and anionic dyes from aqueous solutions, J. Water
Process Eng. 43 (Oct. 2021), 102304, https://doi.org/10.1016/j.
jwpe.2021.102304. | |
dc.relation | [8] A. Waheed, et al., Ultrahigh and efficient removal of Methyl orange, Eriochrom
Black T and acid Blue 92 by triazine based cross-linked polyamine resin: synthesis,
isotherm and kinetic studies, Colloids Surf.A Physicochem. Eng. Asp. 607 (Dec.
2020), 125472, https://doi.org/10.1016/j.colsurfa.2020.125472. | |
dc.relation | [9] K. Miserli, D. Kogola, I. Paraschoudi, I. Konstantinou, Activation of persulfate by
biochar for the degradation of phenolic compounds in aqueous systems, Chem.
Eng. J. Adv. 9 (Mar. 2022), 100201, https://doi.org/10.1016/j.ceja.2021.100201. | |
dc.relation | [10] T. Rasheed, S. Khan, T. Ahmad, N. Ullah, Covalent organic frameworks-based
membranes as promising modalities from preparation to separation applications:
an overview, Chem. Rec. 22 (8) (May 2022), e202200062, https://doi.org/
10.1002/tcr.202200062. | |
dc.relation | [11] Z. Masood, et al., Analysis of physicochemical parameters of water and sediments
collected from Rawal Dam Islamabad, Am. J. Toxicol. Sci. 7 (3) (2015) 123–128,
https://doi.org/10.5829/idosi.aejts.2015.7.3.94220. | |
dc.relation | [12] S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Determination of chemical oxygen
demand for phenolic compounds from oil refinery wastewater implementing
different methods, Desalin. Water Treat. 231 (2021) 44–53, https://doi.org/
10.5004/dwt.2021.27443. | |
dc.relation | [13] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Biomass-derived chemical substitutes
for bisphenol A: recent advancements in catalytic synthesis, Chem. Soc. Rev. 49
(17) (Sep. 2020) 6329–6363, https://doi.org/10.1039/d0cs00179a. | |
dc.relation | [14] J. Heo, Y. Yoon, G. Lee, Y. Kim, J. Han, C.M. Park, Enhanced adsorption of
bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar
composite, Bioresour. Technol. 281 (Jun. 2019) 179–187, https://doi.org/
10.1016/j.biortech.2019.02.091. | |
dc.relation | [15] A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols,
benzophenones, and benzotriazoles in soils, groundwater, surface water,
sediments, and food: a review, Environ. Sci. Pollut. Res. 22 (8) (Apr. 2015)
5711–5741, https://doi.org/10.1007/s11356-014-3974-5. | |
dc.relation | [16] O.E. Ohore, Z. Songhe, Endocrine disrupting effects of bisphenol A exposure and
recent advances on its removal by water treatment systems. A review, Sci. Afr. 5
(Sep. 2019), e00135, https://doi.org/10.1016/j.sciaf.2019.e00135. | |
dc.relation | [17] J. Xing, S. Zhang, M. Zhang, J. Hou, A critical review of presence, removal and
potential impacts of endocrine disruptors bisphenol A, Comp. Biochem. Physiol.
Part - C Toxicol. Pharmacol. 254 (Apr. 2022), 109275, https://doi.org/10.1016/j.
cbpc.2022.109275. | |
dc.relation | [18] H. He, et al., Urinary bisphenol A and its interaction with CYP17A1 rs743572 are
associated with breast cancer risk, Chemosphere 286 (Jan. 2022), 131880, https://
doi.org/10.1016/j.chemosphere.2021.131880. | |
dc.relation | [19] J.I. Kim, Y.A. Lee, C.H. Shin, Y.C. Hong, B.N. Kim, Y.H. Lim, Association of
bisphenol A, bisphenol F, and bisphenol S with ADHD symptoms in children,
Environ. Int. 161 (Mar. 2022), 107093, https://doi.org/10.1016/j.
envint.2022.107093. | |
dc.relation | [20] M. Li, et al., One-step construction of Ti-In bimetallic MOFs to improve synergistic
effect of adsorption and photocatalytic degradation of bisphenol A, Sep. Purif.
Technol. 298 (Oct. 2022), https://doi.org/10.1016/j.seppur.2022.121658. | |
dc.relation | [21] J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of bisphenol A
(BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/
S2O82- oxidation systems, J. Environ. Manag. 156 (Jun. 2015) 266–275, https://
doi.org/10.1016/j.jenvman.2015.03.048. | |
dc.relation | [22] M. Bourgin, et al., Chlorination of bisphenol A: non-targeted screening for the
identification of transformation products and assessment of estrogenicity in
generated water, Chemosphere 93 (11) (Nov. 2013) 2814–2822, https://doi.org/
10.1016/j.chemosphere.2013.09.080. | |
dc.relation | [23] N.S. Ali, K.R. Kalash, A.N. Ahmed, T.M. Albayati, Performance of a solar
photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO 2, and UV/
H 2 O 2 to control membrane fouling, Sci. Rep. 0123456789 (2022) 1–10, https://
doi.org/10.1038/s41598-022-20984-0. | |
dc.relation | [24] P. Shao, et al., Defect-rich porous carbon with anti-interference capability for
adsorption of bisphenol a via long-range hydrophobic interaction synergized with
short-range dispersion force, J. Hazard. Mater. 403 (Feb. 2021), 123705, https://
doi.org/10.1016/j.jhazmat.2020.123705. | |
dc.relation | [25] M. Yegane badi, A. Azari, A. Esrafili, E. Ahmadi, M. Gholami, Performance
evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles
in removing fluoride from aqueous solution, J. Maz. Univ. Med. Sci. 25 (124)
(2015). | |
dc.relation | [26] R. RezaeiKalantary, A. JonidiJafari, B. Kakavandi, S. Nasseri, A. Ameri, A. Azari,
Adsorption and magnetic separation of lead from synthetic wastewater using
carbon/iron oxide nanoparticles composite, J. Maz. Univ.Med. Sci. 24 (113)
(2014). | |
dc.relation | [27] M.A. Zazouli, A. Azari, S. Dehghan, R.S. Malekkolae, Adsorption of methylene blue
from aqueous solution onto activated carbons developed from eucalyptus bark and
Crataegus oxyacantha core, Water Sci. Technol. 74 (9) (2016) 2021–2035, https://
doi.org/10.2166/wst.2016.287. | |
dc.relation | [28] M. Guo, et al., Carbon nanotube-grafted chitosan and its adsorption capacity for
phenol in aqueous solution, Sci. Total Environ. 682 (2019) 340–347, https://doi.
org/10.1016/j.scitotenv.2019.05.148. | |
dc.relation | [29] J. Jaafari, et al., Journal of industrial and engineering chemistry adsorption of p
-cresol on Al 2 O 3 coated multi-walled carbon nanotubes: response surface
methodology and isotherm study, J. Ind. Eng. Chem. 57 (2018) 396–404, https://
doi.org/10.1016/j.jiec.2017.08.048. | |
dc.relation | [30] T.M. Albayati, A.M. Doyle, PURIFICATION OF ANILINE AND NITROSUBSTITUTED ANILINE CONTAMINANTS FROM AQUEOUS SOLUTION USING
BETA ZEOLITE vol. 23, no. 1, 2014. | |
dc.relation | [31] S. Rovani, J.J. Santos, S.N. Guilhen, P. Corio, D.A. Fungaro, Fast, efficient and
clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles
from sugarcane waste ash, RSC Adv. 10 (46) (Jul. 2020) 27706–27712, https://doi.
org/10.1039/d0ra05198e. | |
dc.relation | [32] A. Azari, et al., Efficiency of magnitized graphene oxide nanoparticles in removal
of 2,4-dichlorophenol from aqueous solution, J. Maz. Univ. Med. Sci. 26 (144)
(2017) 265–281. | |
dc.relation | [33] B. Li, J. Ma, L. Zhou, Y. Qiu, Magnetic microsphere to remove tetracycline from
water: adsorption, H2O2 oxidation and regeneration, Chem. Eng. J. 330 (Dec.
2017) 191–201, https://doi.org/10.1016/j.cej.2017.07.054. | |
dc.relation | [34] M. Mansha, et al., Ultrahigh removal of methyl orange, acid blue-92 and malachite
green by a novel triazine-based polyamine resin: synthesis, isotherm and kinetic
studies, Int. J. Environ. Anal. Chem. (2020), https://doi.org/10.1080/
03067319.2020.1858072. | |
dc.relation | [35] M. Mansha, A. Waheed, T. Ahmad, I.W. Kazi, N. Ullah, Synthesis of a novel
polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from
aqueous solution, Environ. Res. 184 (2020), https://doi.org/10.1016/j.
envres.2020.109337. | |
dc.relation | [36] T. Ahmad, M.S. Manzar, S.U. Khan, I.W. Kazi, N.D. Mu’azu, N. Ullah, Synthesis and
adsorptive performance of a novel triazine core-containing resin for the ultrahigh
removal of malachite green from water, Arab. J. Sci. Eng. (2022), https://doi.org/
10.1007/s13369-022-07015-w. | |
dc.relation | [37] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum,
J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/10.1021/
ja02242a004. | |
dc.relation | [38] H. Freundlich, Über die adsorption in Losungen, ¨ <sb:contribution><sb:title>Z.
Phys.</sb:title></sb:contribution><sb:host><sb:issue><sb:series><sb:
title>Chem.</sb:title></sb:series></sb:issue></sb:host> 57U (1) (1907),
https://doi.org/10.1515/zpch-1907-5723. | |
dc.relation | [39] M.M. Dubinin, et al., Development of concepts of the volume filling of micropores
in the adsorption of gases and vapors by microporous adsorbents - communication
4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem.
Sci. 20 (1) (Jan. 1971) 17–22, https://doi.org/10.1007/BF00849310. | |
dc.relation | [40] R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng.
Chem. 44 (2) (Feb. 1952) 383–387, https://doi.org/10.1021/ie50506a049. | |
dc.relation | [41] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic
parameters of liquid–phase adsorption process calculated from different
equilibrium constants related to adsorption isotherms: a comparison study,
J. Environ. Chem. Eng. 9 (6) (Dec. 2021), 106674, https://doi.org/10.1016/j.
jece.2021.106674. | |
dc.relation | [42] S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. | |
dc.relation | [43] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process
Biochem. 34 (5) (1999) 451–465, https://doi.org/10.1016/S0032-9592(98)
00112-5. | |
dc.relation | [44] M. Avrami, Kinetics of phase change. I: general theory, J. Chem. Phys. 7 (12)
(1939) 1103–1112, https://doi.org/10.1063/1.1750380. | |
dc.relation | [45] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into
spheres and their application to chromatography, Trans. Faraday Soc. 51 (3851)
(1955) 1540–1551, https://doi.org/10.1039/TF9555101540. | |
dc.relation | [46] D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Advances made in removing
paraquat herbicide by adsorption technology: a review, J. Water Process Eng. 49
(June) (2022), 102988, https://doi.org/10.1016/j.jwpe.2022.102988. | |
dc.relation | [47] J. Wang, Y. Wu, Y. Cao, G. Li, Y. Liao, Influence of surface roughness on contact
angle hysteresis and spreading work, Colloid Polym. Sci. 298 (8) (Aug. 2020)
1107–1112, https://doi.org/10.1007/s00396-020-04680-x. | |
dc.relation | [48] W. Guo, et al., Selective adsorption and separation of BPA from aqueous solution
using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites,
Chem. Eng. J. 171 (2) (2011) 603–611, https://doi.org/10.1016/j.
cej.2011.04.036. | |
dc.relation | [49] H. Ding, Z. Zhang, Y. Li, L. Ding, D. Sun, Z. Dong, Fabrication of novel Fe/mn/N codoped biochar and its enhanced adsorption for bisphenol A based on π – π electron
donor-acceptor, Bioresour. Technol. (2022), 128018, https://doi.org/10.1016/j.
biortech.2022.128018. | |
dc.relation | [50] L. Yi, et al., Enhanced adsorption of bisphenol A, tylosin, and tetracycline from
aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and
π-π electron-donor-acceptor (EDA) interactions, Sci. Total Environ. 719 (Jun.
2020), 137389, https://doi.org/10.1016/j.scitotenv.2020.137389. | |
dc.relation | [51] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma, Fast adsorption of BPA with high capacity
based on Π-Π electron donor-acceptor and hydrophobicity mechanism using an insitu sp2 C dominant N-doped carbon, Chem. Eng. J. 381 (August 2019) (2020)
122510, https://doi.org/10.1016/j.cej.2019.122510. | |
dc.relation | [52] A. Chen, Y. Xie, X. Wei, B. Chen, J. Pang, One-step preparation of sodium alginatebased porous carbon for the adsorption of bisphenol a in water, J. Chem. Eng. Data
66 (2) (Feb. 2021) 1101–1109, https://doi.org/10.1021/acs.jced.0c00894. | |
dc.relation | [53] Y. Sun, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast
adsorption of methylene blue: selective adsorption and mechanism studies,
Bioresour. Technol. 344 (PA) (2022), 126186, https://doi.org/10.1016/j.
biortech.2021.126186. | |
dc.relation | [54] S.B. Johnson, G.V. Franks, P.J. Scales, T.W. Healy, in: II . The Shear Yield Stress of
Concentrated Suspensions no. 20, 1999, pp. 2844–2853. | |
dc.relation | [55] R. Sprycha, Electrical double layer at alumina/electrolyte interface. I. Surface
charge and zeta potential, J. Colloid Interface Sci. 127 (1) (1989) 1–11, https://
doi.org/10.1016/0021-9797(89)90002-7. | |
dc.relation | [56] J.M. Borah, S. Mahiuddin, N. Sarma, D.F. Parsons, B.W. Ninham, Specific ion
effects on adsorption at the solid/electrolyte interface: a probe into the
concentration limit, Langmuir 27 (14) (2011) 8710–8717, https://doi.org/
10.1021/la2006277. | |
dc.relation | [57] J. Liu, B. Zhou, H. Zhang, J. Ma, B. Mu, W. Zhang, A novel biochar modified by
chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution,
Bioresour. Technol. 294 (August) (2019), 122152, https://doi.org/10.1016/j.
biortech.2019.122152. | |
dc.relation | [58] Z. Fang, et al., The adsorption mechanisms of oriental plane tree biochar toward
bisphenol S: a combined thermodynamic evidence, spectroscopic analysis and
theoretical calculations, Environ. Pollut. 310 (July) (2022), 119819, https://doi.
org/10.1016/j.envpol.2022.119819. | |
dc.relation | [59] W. Shi, et al., Wheat straw derived biochar with hierarchically porous structure for
bisphenol A removal: preparation, characterization, and adsorption properties,
Sep. Purif. Technol. 289 (February) (2022), 120796, https://doi.org/10.1016/j.
seppur.2022.120796. | |
dc.relation | [60] M.B. de Farias, M.G.C. Silva, M.G.A. Vieira, Adsorption of bisphenol a from
aqueous solution onto organoclay: experimental design, kinetic, equilibrium and
thermodynamic study, Powder Technol. 395 (Jan. 2022) 695–707, https://doi.
org/10.1016/j.powtec.2021.10.021. | |
dc.relation | [61] T.J. Al-Musawi, N. Mengelizadeh, F. Ganji, C. Wang, D. Balarak, Preparation of
multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their
adsorption performance for bisphenol A compound, Adv. Powder Technol. 33 (2)
(2022), 103438, https://doi.org/10.1016/j.apt.2022.103438. | |
dc.relation | [62] S. Yousefinia, M.R. Sohrabi, F. Motiee, M. Davallo, The efficient removal of
bisphenol A from aqueous solution using an assembled nanocomposite of zerovalent iron nanoparticles/graphene oxide/copper: adsorption isotherms, kinetic,
and thermodynamic studies, J. Contam. Hydrol. 243 (September) (2021), 103906,
https://doi.org/10.1016/j.jconhyd.2021.103906. | |
dc.relation | [63] E.C. Lima, et al., Adsorption of Cu(II) on Araucaria angustifolia wastes:
determination of the optimal conditions by statistic design of experiments,
J. Hazard. Mater. 140 (1–2) (2007) 211–220, https://doi.org/10.1016/j.
jhazmat.2006.06.073. | |
dc.relation | [64] I. Ali, Z.A. Al-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent
and removal of ibuprofen drug residue from water, J. Mol. Liq. 219 (2016)
858–864, https://doi.org/10.1016/j.molliq.2016.04.031. | |
dc.relation | [65] D.S.P. Franco, J.L.S. Fagundes, J. Georgin, N.P.G. Salau, G.L. Dotto, A mass transfer
study considering intraparticle diffusion and axial dispersion for fixed-bed
adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J.
397 (April) (Oct. 2020), 125423, https://doi.org/10.1016/j.cej.2020.125423. | |
dc.relation | [66] J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto,
Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to
uptake crystal violet from colored effluents: alternative kinetic approaches,
Environ. Sci. Pollut. Res. 27 (20) (Jul. 2020) 25727–25739, https://doi.org/
10.1007/s11356-020-08854-6. | |
dc.relation | [67] J. Kwon, B. Lee, Bisphenol a adsorption using reduced graphene oxide prepared by
physical and chemical reduction methods, Chem. Eng. Res. Des. 104 (2015)
519–529, https://doi.org/10.1016/j.cherd.2015.09.007. | |
dc.relation | [68] M.A. Martín-Lara, M. Calero, A. Ronda, I. I´
anez-Rodríguez, ˜ C. Escudero, Adsorptive
behavior of an activated carbon for bisphenol A removal in single and binary
(bisphenol A-heavy metal) solutions, Water (Switzerland) 12 (8) (2020), https://
doi.org/10.3390/W12082150. | |
dc.relation | [69] F. Dalanta, T.D. Kusworo, Synergistic adsorption and photocatalytic properties of
AC/TiO2/CeO2 composite for phenol and ammonia–nitrogen compound
degradations from petroleum refinery wastewater, Chem. Eng. J. 434 (January)
(2022), 134687, https://doi.org/10.1016/j.cej.2022.134687. | |
dc.relation | [70] S.M. Niknam, M. Kashaninejad, I. Escudero, M.T. Sanz, S. Beltran, ´ J.M. Benito,
Valorization of olive mill solid residue through ultrasound-assisted extraction and
phenolics recovery by adsorption process, J. Clean. Prod. 316 (July) (2021),
https://doi.org/10.1016/j.jclepro.2021.128340. | |
dc.relation | [71] Z. Wang, C. Wang, J. Yuan, C. Zhang, Adsorption characteristics of adsorbent resins
and antioxidant capacity for enrichment of phenolics from two-phase olive waste,
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1040 (2017) 38–46, https://doi.
org/10.1016/j.jchromb.2016.11.023. | |
dc.relation | [72] Y. Yang, Y. Sik, K. Kim, E.E. Kwon, Y. Fai, Occurrences and removal of
pharmaceuticals and personal care products (PPCPs) in drinking water and water/
sewage treatment plants: a review, Sci. Total Environ. 596–597 (2017) 303–320,
https://doi.org/10.1016/j.scitotenv.2017.04.102. | |
dc.relation | [73] J. Georgin, et al., Efficient removal of naproxen from aqueous solution by highly
porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels,
J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106820. | |
dc.relation | [74] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of
biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from
an aqueous medium, J. Environ. Chem. Eng. 10 (3) (2022), 107408, https://doi.
org/10.1016/j.jece.2022.107408. | |
dc.relation | [75] J. Georgin, et al., Residual peel of pitaya fruit (Hylocereus undatus) as a precursor
to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow
dye from water, J. Environ Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j.
jece.2021.107006. | |
dc.relation | [76] Y. Jeong, et al., Development of modified mesoporous carbon (CMK-3) for
improved adsorption of bisphenol-A, Chemosphere 238 (Jan. 2020), 124559,
https://doi.org/10.1016/J.CHEMOSPHERE.2019.124559. | |
dc.relation | [77] M.Y. Lee, et al., Aqueous adsorption of bisphenol A over a porphyrinic porous
organic polymer, Chemosphere 265 (Feb. 2021), 129161, https://doi.org/
10.1016/j.chemosphere.2020.129161. | |
dc.relation | [78] X. Zhong, Z. Lu, W. Liang, B. Hu, The magnetic covalent organic framework as a
platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous
solution, J. Hazard. Mater. 393 (Jul. 2020), 122353, https://doi.org/10.1016/J.
JHAZMAT.2020.122353. | |
dc.relation | [79] H. Huang, C. Zhao, Y. Ji, R. Nie, P. Zhou, H. Zhang, Preparation, characterization
and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular
sieves, J. Hazard. Mater. 178 (1–3) (Jun. 2010) 680–685, https://doi.org/
10.1016/j.jhazmat.2010.01.140. | |
dc.relation | [80] F. Marrakchi, F. Fazeli Zafar, M. Wei, S. Wang, Cross-linked FeCl3-activated
seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of
bisphenol A plasticizer and basic dye from aqueous solution, Bioresour. Technol.
331 (Jul. 2021), 125046, https://doi.org/10.1016/j.biortech.2021.125046. | |
dc.relation | [81] W. Libbrecht, et al., Tuning the pore geometry of ordered mesoporous carbons for
enhanced adsorption of bisphenol-A, Materials (Basel) 8 (4) (2015) 1652–1665,
https://doi.org/10.3390/ma8041652. | |
dc.relation | [82] Q. Li, et al., Enhanced adsorption of bisphenol a from aqueous solution with 2-
vinylpyridine functionalized magnetic nanoparticles, Polymers (Basel) 10 (10)
(Oct. 2018) 1136, https://doi.org/10.3390/polym10101136. | |
dc.relation | [83] M.H. Dehghani, R.R. Karri, M. Alimohammadi, S. Nazmara, A. Zarei, Z. Saeedi,
Insights into endocrine-disrupting bisphenol-A adsorption from pharmaceutical
effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles, J. Mol.
Liq. 311 (Aug. 2020), 113317, https://doi.org/10.1016/j.molliq.2020.113317. | |
dc.relation | [84] F. Marrakchi, F.Fazeli Zafar, M. Wei, C. Yuan, B. Cao, S. Wang, N-doped
mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption
of the endocrine disruptor bisphenol A, J. Mol. Liq. 345 (Jan. 2022) 117040,
https://doi.org/10.1016/j.molliq.2021.117040. | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 53 | |
dc.rights | © 2023 Elsevier Ltd. All rights reserved. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S221471442300140X | |
dc.subject | Bisphenol A | |
dc.subject | Adsorption | |
dc.subject | Decontamination | |
dc.subject | Composites | |
dc.title | Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |