dc.creator | amelec, viloria | |
dc.creator | Pineda Lezama, Omar Bonerge | |
dc.creator | Cabrera, Danelys | |
dc.date | 2021-01-07T14:25:32Z | |
dc.date | 2021-01-07T14:25:32Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:06:12Z | |
dc.date.available | 2023-10-03T19:06:12Z | |
dc.identifier | 1877-0509 | |
dc.identifier | https://hdl.handle.net/11323/7664 | |
dc.identifier | https://doi.org/10.1016/j.procs.2020.07.095 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167708 | |
dc.description | This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and RBFN. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] Zhang, C., Craine, W. A., McGee, R. J., Vandemark, G. J., Davis, J. B., Brown, J., ... & Sankaran, S. (2020). Image-Based Phenotyping of
Flowering Intensity in Cool-Season Crops. Sensors, 20(5), 1450. | |
dc.relation | [2] Zhang, F., Zhang, X.: Classification and Quality Evaluation of Tobacco leaves Based in Image Processing and Fuzzy Comprehensive
Evaluation. Sensors. 11(3), pp. 2369–2384 (2011) | |
dc.relation | [3] Mittal, P., Saini, R. K., & Jain, N. K. (2019). Image enhancement using fuzzy logic techniques. In Soft Computing: Theories and
Applications (pp. 537-546). Springer, Singapore. | |
dc.relation | [4] Ramya, H. R., & Sujatha, B. K. (2016, October). A novel approach for medical image fusion using fuzzy logic type-2. In 2016 International
Conference on Circuits, Controls, Communications and Computing (I4C) (pp. 1-5). IEEE. | |
dc.relation | [5] Pekaslan, D., Garibaldi, J. M., & Wagner, C. (2018, October). Noise parameter estimation for non-singleton fuzzy logic systems. In 2018
IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2960-2965). IEEE. | |
dc.relation | [6] Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance
evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence, ICSI 2018. Lecture Notes in
Computer Science, vol 10942. Springer, Cham (2018) | |
dc.relation | [7] Bora, D. J., & Thakur, R. S. (2018). An Efficient Technique for Medical Image Enhancement Based on Interval Type-2 Fuzzy Set Logic. In
Progress in Computing, Analytics and Networking (pp. 667-678). Springer, Singapore. | |
dc.relation | [8] Gonzalez, C. I., Melin, P., Castro, J. R., Castillo, O., & Mendoza, O. (2016). Optimization of interval type-2 fuzzy systems for image edge
detection. Applied Soft Computing, 47, 631-643. | |
dc.relation | [9] Reyes, D., Álvarez, A., Rincón, E. J., Valderrama, J., Noradino, P., & Méndez, G. M. (2017, October). A PID using a non-singleton fuzzy
logic system type 1 to control a second-order system. In North American Fuzzy Information Processing Society Annual Conference (pp. 264-
269). Springer, Cham. | |
dc.relation | [10] Sv, A. K., & Srivatsa, S. K. (2018). An image fusion technique based on sparse wavelet transform and non-singleton type-2 FNN techniques.
TAGA J, 14, 76-86. | |
dc.relation | [11] Bengochea-Guevara, J. M., Andújar, D., Cantuña, K., Garijo-Del-Río, C., & Ribeiro, A. (2019, November). An Autonomous Guided Field
Inspection Vehicle for 3D Woody Crops Monitoring. In Iberian Robotics conference (pp. 164-175). Springer, Cham. | |
dc.relation | [12] Myna, A. N., & Prakash, J. (2018). Medical Image Fusion using Interval Type 2 Fuzzy Logic. International Journal of Applied Engineering
Research, 13(14), 11410-11416. | |
dc.relation | [13] Mohammadzadeh, A., & Kayacan, E. (2019). A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high
dimensional applications. Neurocomputing, 338, 63-71. | |
dc.relation | [14] Desta, H. (2017). Development of Automatic Sesame Grain Classification and Grading System Using Image Processing Techniques
(Doctoral dissertation, Addis Ababa University). | |
dc.relation | [15] Davila, I., Lopez-Juarez, I., Mendez, G. M., Osorio-Comparan, R., Lefranc, G., & Cubillos, C. (2017). A singleton type-1 fuzzy logic
controller for on-line error compensation during robotic welding. International Journal of Computers Communications & Control, 12(2), 201-
216. | |
dc.relation | [16] Varela, N., Silva, J., Pineda, O. B., & Cabrera, D. (2020). Prediction of the Corn Grains Yield through Artificial Intelligence. Procedia
Computer Science, 170, 1017-1022. | |
dc.relation | [17] Viloria A., Varela N., Pérez D.M., Lezama O.B.P. (2020) Data Processing for Direct Marketing Through Big Data. In: Smys S., Tavares J.,
Balas V., Iliyasu A. (eds) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and
Computing, vol 1108. Springer, Cham. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Procedia Computer Science | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1877050920317956 | |
dc.subject | Neural networks | |
dc.subject | Irrigation control | |
dc.subject | Instrumentation and image analysis | |
dc.subject | Micro-greenhouse | |
dc.title | Inspection process for dimensioning through images and fuzzy logic | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |