dc.creatorCarpintero Durango, Javier Andrés
dc.creatorFábregas Villegas, Jonathan
dc.creatorSantamaría De La Cruz, Henry
dc.creatorPérez Pérez, Saul
dc.creatorValencia Ochoa, Guillermo
dc.date2019-09-12T15:45:13Z
dc.date2019-09-12T15:45:13Z
dc.date2019
dc.date.accessioned2023-10-03T19:05:59Z
dc.date.available2023-10-03T19:05:59Z
dc.identifier2319-8613
dc.identifier0975-4024
dc.identifierhttp://hdl.handle.net/11323/5264
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167673
dc.descriptionThe design of two air-biogas mixers according to the design literature of these devices for Diesel engine applications was studied through computational fluid dynamics (CFD). The gradient of hydrodynamic variables was profiled on the longitudinal axis of the compared equipment. This research presents a comparison instrument about the efficiency of the design methodology for sizing gaseous fuel air mixing equipment. Comparing the design methodologies of Agudelo and Mitzlaff mixing tubes, the profiles of velocities, pressure profiles and volumetric fraction profiles of the mixtures were obtained.
dc.descriptionUniversidad De La Costa, Universidad Autónoma del Caribe, Universidad del Atlántico.
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Journal of Engineering & Technology
dc.relation[1] J. Agudelo, R. Mejía. (2001) Desarrollo de un Modelo para el dimensionamiento de mezcladores aire-gas natural para motores, Revista Facultad Ingeniería de la Universidad de Antioquía. [2] V. Mitzlaff. (2008) Engines for Biogas, Theory, Modification, Economy, Operation, Ed. Gate, 59-69. [3] AC. Chandekar, BK. Debnath. (2018) Computational investigation of air-biogas mixing device for different biogas substitutions and engine load variations, Renewable Energy, 811-824. https://doi.org/10.1016/j.renene.2018.05.003. [4] F. Bermejo, W. Orozco. (2010) Diseño de un Mezclador Aire-Biogás para un Motor Diesel Turboalimentado, Prospectiva 8, 37-43. [5] W. Pulkrabek. (2004) Engineering Fundamentals of the Internal Combustion Engine, 2th edition, Editorial Pearson Prentice Hall. https://doi.org/10.1115/1.1669459. [6] J. Aditya, K. Umesh. (2013) Numerical Validation of Producer Gas Carburetor, International Journal of Engineering and Science Research 3(10), 4757-4766. [7] S. Biradar, Ebinezar, R. Reddy. (2013) Validation of Producer Gas Carburetor Using CFD, International Journal of Latest Research in Science and Technology 2 (6), 90-94. [8] K. Peda, K. Somasundaram, U. Gokulraj, B. Ashok, S. Denis, C. Ramesh. (2015) A Comparative Study of Port Injected And Carbureted Type Lpg-Diesel Dual Fuel Engine Using CFD Analysis, Journal of Chemical and Pharmaceutical Sciences 9, 328-334. [9] MR. Sanket, H. Shinde. (2016) Overview of Design Considerations for Biogas Operated Intake Device, International Journal of Research Publications In Engineering And Technology 2 (7), 23-28. [10] F. Vidian, F. Edianto, Ismail. (2018) CFD simulation 3D premixed combustion of methane: influence of the excess air, International Journal of Engineering & Technology, 7 (4), 5399-5403.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSpacer ring
dc.subjectBiogas
dc.subjectDiffuser cone
dc.subjectCFD (Computational Fluids Dynamics)
dc.subjectMulticomponent flow
dc.titleComputational validation of the design of an air-biogas mixer for a turboalimented diesel engine
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución