| dc.relation | De La Hoz, E., De la Hoz, E., Ortiz, A., Ortega, J., & Prieto, B. (21 de September de 2015). PCA
filtering and probabilistic SOM for network intrusion detection. Neurocomputing, 164,
71-81. doi:10.1016/j.neucom.2014.09.083
Devijver, P., & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Londres:
Prentice-Hall.
Shlens, J. (2009). A Tutorial on Principal Component Analysis. Center for Neural Science, NYU
y Systems Neurology Laboratory, Salk Institute for Biological Studies La Jolla.
Alahakoon, D., Halgamuge, S., & Srinivasan, B. (1998). A structure adapting feature map for
optimal cluster representation. International Conference on Neural Information
Processing ICONIP98, 809-812.
Alhoniemi, E., Himberg, J., & Vesanto, J. (1999). Probabilistic measures for responses of selforganizing map units. Proceedings of the International ICSC Congress on Computational
Intelligence Methods and Applications (CIMA), 1, 286-290.
Alvarez Illán, I. (Junio de 2009). Análisis en Componentes de Imágenes Funcionales para la
Ayuda al Diagnóstico de la Enfermedad del Alzheimer. Tesis Doctoral. Granada.
Álvarez Illán, I., Manuel Górriz, J., Ramírez, J., Salas GonzáLez, D., López, M. M., Segovia, F.,
. . . Puntonet, C. (February de 2011). 18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis. Information Sciences, 181(4), 903-916.
doi:10.1016/j.ins.2010.10.027
Anderson, J. (1980). Computer Security Threat Monitoring and Surveillance. Fort Washington,
Pennsylvania: James P. Anderson Company.
Axelsson, S. (2000). Intrusion Detection Systems: A Taxonomy and Survey. Technical Report 99-
15, Dept. of Computer Engineering, Chalmers University of Technology, Goteborg,
Sweden.
Bace, R. (2000). An Introduction to Intrusion Detection and Assessment / for System and
Network Security Management. Obtenido de ICSA:
http://www.iss.net/documents/whitepapers/intrusion.pdf
Ben-Hur, A., & Guyon, I. (2003). Detecting stable clusters using principal component analysis.
(M. Brownstein, & A. Kohodursky, Edits.) Humana press.
Bhuyan, M., Bhattachayya, D., & Kalita, J. (2013). Network anomaly detection: methods ,
systems and tools. IEEE Commun. Surv. Tutor, 99.
Blackmore, J., & Miikkulainen, R. (1993). Incremental grid growing: Encoding highdimensional structure into a two-dimensional feature map. Proceedings of the
International Conference on Neural Networks ICNN93, I, 450-455.
Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine
learning. Artificial Intelligence, 245-271.
Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2012). A review of feature
selection methods on synthetic data. Knowledge and Information System, 483-519.Bouckaert, R. (2008). Practical bias variance decomposition. Advances in Artificial Intelligence -
LNCS., 5360, 247-257.
Bouvrie, P., Angulo, J., & Dehesa, J. (1 de June de 2011). Entropy and complexity analysis of
Dirac-delta-like quantum potentials. Physica A: Statistical Mechanics and its
Applications, 390(11), 2215–2228. doi:doi:10.1016/j.physa.2011.02.020
Bouzida, Y., & Gombault, S. (2004). Eigenconnections to intrusion detection. 19th IFIP
International Information Security Conference (SEC2004), IEEE, 147, págs. 241–258.
Toulouse, France. doi:10.1007/1-4020-8143-X_16
Bradley, P., & Fayyad, U. (1998). Refining initial points for K-Means clustering. Proc. 15th
International Conf. on Machine Learning (págs. 91–99). San Francisco, CA: Morgan
Kaufmann. Obtenido de citeseer.ist.psu.edu/bradley98refining.html
Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and Regression Trees
(Wadsworth Statistics/Probability) (Vol. 1). Boca Raton London New York Washington,
DC.: Chapman and Hall/CRC; Edición: New Ed (1 de enero de 1984).
Brumlen, D., Wang, H., Newsome, J., & Song, D. (2006). Towards Automatic Generation of
Vulnerability-based Signatures. IEEE Symposium, 1081-6011.
Buenabad, J., & Coria, J. (Junio de 2004). Tolerancia a fallas para sistemas de detección de
intrusos de red. Tesis de Maestría. CINVESTAV-IPN.
California, U. O. (1999). The UCI KDD Archive. (University of California) Obtenido de
http://kdd.ics.uci.edu/databases/kddcup99/task.htmlCalvo, R. F. (9 de Septiembre de 2000). ati. Obtenido de
http://www.ati.es/novatica/glosario/glosario_internet.txt
Cano, J., Herrera, F., & Lozano, M. (15 de May de 2005). Stratification for scaling up
evolutionary prototype selection. Pattern Recognition Letters, 26(7), 953-963.
doi:10.1016/j.patrec.2004.09.043
Carpenter, G., & Grossberg, S. (1988). The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network. Computer, 21(3), 77-88.
Chapman, D., & Zwicky, D. (1997). Construya Firewalls para Internet. Mexico: MacGraw-Hill.
Chauhan, H., & Chauhan, A. (2013). Implementation of decision tree algorithm c4.5.
International Journal of Scientific and Research Publications, 3(10).
Cheng, S.-S., Fu, H.-C., & Wang, H.-M. (2009). Model-Based Clustering by Probabilistic SelfOrganizing Maps. IEEE TRANSACTIONS ON NEURAL NETWORKS, 20(5), 805-826.
Chet, H., & Duren, M. (1998). Detecting Subtle System Changes Using Digital Signatures.
Information Technology Conference, IEEE, 125-128.
Choi, S.-S., Cha, S.-H., & Tappert, C. (2010). A survey of binary similarity and distance
measures. Systemics, Cybernetics And Informatics, 8(1), 43-48.
Comon, P. (1994). Independent component analysis, a new concept? Signal Process, 36(3), 287-
314.
Computer Security Resource Center. (15 de Abril de 1980). Computer Security Threat
Monitoring and Surveillance. Obtenido de
http://csrc.nist.gov/publications/history/ande80.pdfComputerWire. (2002). DDoS Really, Really Tested UltraDNS. Informe técnico. Obtenido de
http://www.theregister.co.uk/2002/12/14/ddos_attack_really_really_tested/ attack really
really tested
Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10, 57-78.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1), 21-27.
Dain, O., & Cunningham, R. (2001). Fusing Heterogeneous Alert Streams into Scenarios (Vol.
6). Springer. doi:10.1007/978-1-4615-0953-0_5
Daniel, B. (01 de 04 de 2006). OSSEC. Obtenido de www.ossec.net
Daniel, B., & Sushil, J. (2002). Applications of Data Mining in Computer Security (Vol. 6).
Springer US. doi:10.1007/978-1-4615-0953-0
Dash, M., & Liu, H. (24 de January de 1997). Feature Selection for Classification. Intelligent
Data Analysis, 1(1-4), 131-156. doi:10.1016/S1088-467X(97)00008-5
Davison, A., & Hinkley, D. (1997). Bootstrap methods and their application. Cambridge:
Cambridge University Press.
De la Hoz Franco, E., De la Hoz Correa, E., Ortiz Garcia, A., Ortega Lopera, J., & Martinez
Alvarez, A. (2014). Feature selection by multi-objective optimisation: Application to
network anomaly detection by hierarchical self-organising maps. Knowledge-Based
Systems, 71, 332-338.De la Hoz, E., Ortiz, A., Ortega, J., & De la Hoz, E. (2013). Network Anomaly Classification by
Support Vector Classifiers Ensemble and Non-Linear Projection Technique. HAIS -
Hybrid Artificial Intelligent Systems. Salamanca, España.
Debar, H., Dacier, M., & Wespi, A. (Julio-Agosto de 2000). A Revised Taxonomy for IntrusionDetection Systems. Springer, 55(7-8), 361-378. doi:10.1007/BF02994844
Dempster, A., Lair, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 39(1), 1-38.
Denison, D., Mallick, B., & F.M. Smith, A. (1998). A Bayesian CART Algorithm. Biometrika,
85(2), 363-377.
Devijver, P. (Abril de 1977). Reconnaissance des Formes par la Méthode des Plus Proches
Voisins. Doctoral Dissertation. Paris, Italia: Univ. de París VI.
Devijver, P., & Kittler, J. (1982). Pattern recognition : a statistical approach. New York,
Englewood Cliffs, USA: Prentice/Hall International.
Devyver, P. A., & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Michigan,
USA: Prentice-Hall.
Dittenbach, M., Merkel, D., & Rauber, A. (2000). The growing hierarchical self-organizing map.
Proceedings of the international joint conference on neural networks, VI, 15-19.
Doak, J. (1992). An evaluation of feature-selection methods and their application to computer
security. Tech. rep., University of California, Department of Computer Science.Duda, R., Hart, P., & Stork, D. (1996). Pattern Classification and Scene Analysis: Part I Pattern
Classification. En Pattern Classification and Scene Analysis. John Wiley & Sons.
Duin, R. (2000). Classifiers in almost empty spaces. IEEE Explore.
Duran, F. F., Martinez Sanchez, I., & Sanchez Meraz, M. (2015). Improving Informatics
Security Using Quality Control Circles. PROCEEDINGS OF THE 22015 THIRTY
FIFTH CENTRAL AMERICAN AND PANAMA CONVENTION, 1-5.
Eckmann, S. (2001). http://citeseerx.ist.psu.edu/. Obtenido de
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.4366&rep=rep1&type=pdf
Elemento, O. (1999). Apport de l’analyse en composantes principales pour l’initialisation et la
validation de cartes de kohonen. Inria Nancy - Grand Est: INRIA.
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for
unsupervised anomaly detection: detecting intru-sions in unlabeled data. Applications of
Data Mining in Computer Security.
Everett, D. (1992). Identity Verification and Biometrics. Boca Raton, FL, USA: CRC Press, Inc.
Fanglu, G., Chen, J., & Chiueh, T. (2006). Spoof Detection for Preventing DoSv Attacks against
DNS Servers|. En 26th IEEE International Conference, 37-47.
Fano, U. (15 de Diciembre de 1961). Effects of Configuration Interaction on Intensities and
Phase Shifts. Physical Review, 124(6), 1866-1878.
Fawcett, T. (2006). An introduction to ROC analysis. (J. Elsevier, Ed.) Pattern Recogn Letters,
27(8), 861-874.Feldmeier, D., & Karn, P. (1989). UNIX Password Security - Ten Years Later.
citeseer.ist.psu.edu/188968.html, 44-63. Obtenido de citeseer.ist.psu.edu/188968.html
Fernandes, S., Kamienski, C., Kelner, J., Mariz, D., & Sadok, D. (9 de October de 2008). A
stratified traffic sampling methodology for seeing the big picture. Computer Networks,
52(14), 2677-2689. doi:doi:10.1016/j.comnet.2008.05.011
Fix, E., & Hodges, J. (1951). Discriminatory analysis, nonparametric discrimination consistency
properties. Technical Report 4, US Air Force, School of Aviation Medicine. Randolph
Field, TX.
Fix, E., & Hodges, J. (1951). Discriminatory analysis. Nonparametric estimation: Consistency
properties. University of California, Berkeley. Randolph Field, Texas: University of
California.
Fix, E., & Hodges, J. (1952). Discriminatory analysis, nonparametric discrimination: small
sample performance. Technical Report 11, US Air Force, School of Aviation Medicine,
Randolph Field, TX.
Fleuret, F. (5 de December de 2004). Fast binary feature selection with conditional mutual
information. (I. Guyon, Ed.) Journal of Machine Learning Research, 1531–1555.
Foithonga, S., Pinngernb, O., & At, B. (2012). Feature subset selection wrapper based on mutual
information and rough sets. Expert Systems with Applications, 39(1), 574–584.
doi:doi:10.1016/j.eswa.2011.07.048
Forgy, E. (1965). Cluster analysis of multivariate data: efficiency vs interpretability of
classifications. Biom 21, 768-769.Friston, K., Ashburner, J., Kiebel, S., Nichols, T., & Penny, W. (2007). Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Elsevier.
Fritzke, B. (1995). A growing neural gas network learns topologies. (G. Tesauro, D. Touretzky,
& T. Leen, Edits.) Advances in Neural Information Processing Systems 7, 625-632.
Fukunaga , K. (1990). Introduction to Statistical Pattern Recognition (2 ed.). (W. Rheinboldt,
Ed.) New York, USA: Academic Press.
Fyodor. (01 de 04 de 2015). Network Mapping Tool. Obtenido de http://www.insecure.org/nmap
Geisser, S. (1993). Predictive inference: An Introduction. Minnesota: Chapman & Hall, Inc.
doi:10.1007/978-1-4899-4467-2
Ghorbani, A., Lu, W., & Tavallae, M. (2009). Network Intrusion Detection and Prevention:
Concepts and Techniques.
Ghorbani, A., Lu, W., & Tavallaee, M. (2010). Evaluation Criteria. Network Intrusion Detection
and Prevention. Concepts and Techniques. Advances in Information Security. Springer
US, 161-183.
Ghosh, J. (2002). Multiclassifier systems: Back to the future. MCS ’02: Proceedings of the Third
International Workshop on Multiple Classifier Systems, 1-15.
Girardin, L. (1999). An Eye on Network Intruder-Administrator Shootouts. Santa Clara,
California, Estados Unidos de America.
Gómez, J., Gil, C., Baños, R., López Márquez, A., Montoya, F., & Gil Montoya, M. (2013). A
Pareto-based multi-objective evolutionary algorithm for automatic rule generation in
network intrusion detection systems. Soft Computing, 17(2), 255-263Gong, F. (2003). Deciphering detection techniques: Part ii. Anomaly-based intrusion detection
McAfee Network Security Technologies Group, White paper, 1, 1-10.
Graf, H., Cosatto, E., Bottou, L., Durdanovic, I., & Vapnik, V. (2005). Parallel support vector
machines: The Cascade svm. Advances in Neural Information Processing Systems, 521-
528.
Guoliang, T., Kaiwang, N., & Ming, T. (15 de June de 2008). EM-type algorithms for computing
restricted MLEs in multivariate normal distributions and multivariate t-distributions.
Computational Statistics and Data Analysis, 52(10), 4768-4778. doi:DOI:
10.1016/j.csda.2008.03.022
Harrald, J., Schmitt, S., & Shrestha, S. (2004). The Effect of Computer Virus Occurrence and
Virus Threat Lever on Antivirus Companies. Engineering Management Conference,
IEEE, 780-784.
Haykin, S. (1999). Neural networks (2 ed.). Prentice-Hall.
He, J., Lan, M., Tan, C., Sung, S., & Low, H. (2004). Initialization of cluster refine-ment
algorithms: A review and comparative study. Proceedings of International Joint
Conference on Neural Networks (IJCNN).
Heady, R., Luger, G., Maccabe, A., & Servilla, M. (1990). The Architecture of a Network Level
Intrusion Detection System. Technical report, Department of Computer Science,
University of New Mexico.Hellman, M. (1970). The Nearest Neighbor Classification Rule with a Reject Option. Systems
Science and Cybernetics, IEEE Transactions on Systems, 6(3), 179 - 185.
doi:10.1109/TSSC.1970.300339
Hellman, M., & Raviv, J. (Julio de 1970). Probability of Error, Equivocation, and the Chernoff
Bound. IEEE Transactions On Information Theory, 16(4), 368-372.
Heskes, T. (2001). Self-Organizing Maps, Vector Quantization, and Mixture Modeling. IEEE
TRANSACTIONS ON NEURAL NETWORKS, 12(6), 1299 - 1305. doi:10.1109/72.963766
Hilera González, J., & Martínez Hernando, V. (2000). Redes neuronales artificiales:
fundamentos modelos y aplicaciones. Madrid: Alfaomega Ra-Ma.
Hopfield, J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedingns of the National Academiy of Sciences, 79(8), 2554-
2558.
Huerta, A. (01 de 04 de 2002). Seguridad en Unix y redes. Obtenido de
https://www.rediris.es/cert/doc/unixsec/unixsec.pdf
Inteco. (01 de 05 de 2015). Instituto Nacional de Tecnólogias de la Comunicación. Obtenido de
https://www.incibe.es/
John, G., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem.
En a. a. Journal version in AIJ (Ed.), International Conference on Machine Learnig
(págs. 121-129). http://csxstatic.ist.psu.edu/about. Obtenido de
http://citeseer.ist.psu.edu/john94irrelevant.htmlJuan, A., & Vidal, E. (2000). Comparison of Four Initialization Techniques for the K-Medians
Clustering Algorithm. Proc. of Joint IAPR Int. Workshops SSPR 2000 and SPR 2000 of
Lecture Notes in Computer Science, 1876, 842-852.
Kalyanmoy, D. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. NY, USA:
Wiley.
Kandeeban, S. S., & Rajesh, R. S. (2010). Integrated Intrusion Detection System Using Soft
Computing. International Journal of Network Security, 87-92.
Kaur, R., Kumar, G., & Kumar, K. (2015). A Comparative Study of Feature Selection
Techniques for Intrusion Detection. 2nd International Conference on Computing for
Sustainable Global Development (págs. 2120-2124). IEEExplore Digital Library.
Kayacık, H., Zincir-Heywood, A., & Heywood, M. (2005). Selecting Features for Intrusion
Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets.
Proceedings of the 3rd Conference on Privacy, Security and Trust.
Kayacik, H., Zincir-Heywood, A., & Heywood, M. (4 de Junio de 2007). A hierarchical SOMbased intrusion detection system. Engineering Applications of Artificial Intelligence, 20,
439–451. doi:10.1016/j.engappai.2006.09.005
Kendall, K. (1998). A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems. Massachusetts Institute of Technology Master´s thesis.
Kendall, K. (1998). A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems. Massachusetts: Massachusetts Institute of Technology Master's ThesisKira, K., & Rendell, L. (1992). The feature selection problem: traditional methods and a new
algorithm. Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets-II),
AAAI Press, (págs. 129–134). Los Angeles, California, USA.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence. 2 (12), págs. 1137-1143. San Francisco: Morgan Kaufmann, Montreal.
Kohavi, R., & John, G. (1997). Wrappers for features subset selection. Artificial Intelligence -
Special issue on relevance, 273-324.
Kohl, J., Neuman, B., & Ts’o, T. (1994). The Evolution of the Kerberos Authentication Services.
IEEE Computer Society Press, 79-94.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43(1), 59-69|.
Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE, 78(9), 1464-1480.
Kohonen, T. (2001). Self-Organizing Maps (3 ed., Vol. 30). Springer-Verlag Berlin Heidelberg.
doi:10.1007/978-3-642-56927-2
Kohonen, T. (2001). Self-Organizing Maps. Springer.
Kotzanikolaou, P., & Douligeris, C. (2007). Computer Network Security: Basic Background and
Current Issues. En P. Kotzanikolaou, & C. Douligeris, Network Security:Current Status
and Future Directions (págs. 1-12). Wiley-IEEE Press.
Kreibich, C., & Crowcroft, J. (2003). Honeycomb-creating intrusion detection signatures using
honeypots. Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets-II).Kumar, S., & Spafford, E. (1995). A Software Architecture to Support Misuse Intrusion
Detection. Proceedings of the 18th National Information Security Conference.
Lakshmanan, V., Fritz, A., Smith, T., Hondl, K., & Stumpf, G. (2007). An automated technique
to quality control radar reflectivity data. Journal of applied meteorology and climatology,
46(3), 288-305.
Lazarevic, A., Kumar, V., & Srivast, J. (2005). Intrusion Detection: A Survey (Vol. 5). US:
Springer US. doi:10.1007/0-387-24230-9_2
Lazarevic, A., Kumar, V., & Srivastava, J. (2005). Intrusion Detection: A survey. En V. Kumar,
J. Srivastava, & A. Lazarevic, Managing Cyber Threats (págs. 19-78). Minnesota, United
States of America: Springer.
Levin, I. (2000). KDD-99 classifier learning contest, LLSoft´s results overview. SIGKDD
Explorations, 1(2), 67-75.
Lidong, Z., & Haas, Z. (2002). Securing ad hoc networks. (IEEE, Ed.) Network, IEEE, 13(6), 24-
30. doi:10.1109/65.806983
Liu, Y. (14-16 de September de 2004). A hybrid neural network learning system. Computer and
Information Technology, 2004. CIT '04, 1016 - 1021. doi:10.1109/CIT.2004.1357329
LL-MIT. (2014). Publications. Recuperado el 26 de June de 2015, de Lincoln Laboratory of
Massachusetts Institute TecnologyLincoln Laboratory of Massachusetts Institute
Tecnology: http://www.ll.mit.edu/publications/index.html
López, M., Ramírez, J., Górriz, J., Álvarez, I., Salas González, D., Segovia, F., . . . Gómez Río,
M. (8 de March de 2011). Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease. Neurocomputing,
74(8), 1260-1271.
Lotlikar, R., & Kothari, R. (1999). Multilayer perceptron based dimensionality reduction. Neural
Networks, IJCNN '99. International Joint Conference, 3, 1691 - 1695.
doi:10.1109/IJCNN.1999.832629
Lunt, T. (1990). IDES: an intelligent system for detecting intruders. Computer Security, Threat
and Countermeasures. Rome.
Lunt, T., & Jagannathan, R. (1988). A Prototype Real-Time Intrusion-Detection Expert System.
Security and Privacy, IEEE Symposium, (págs. 1-59).
Luttrell, S. (1989). Hierarchical self-organising networks. Artificial Neural Networks, 1989.,
First IEE International Conference on (Conf. Publ. No. 313), 2-6.
M. Borghi, M., Maggiolino, M., L. Montagnani, M., & Nuccio, M. (2012). Determinants in the
online distribution of digital content: an exploratory analysis. European Journal for Law
and Technology, 3(2).
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
(L. N. Cam, Ed.) Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1, 281–297.
Maxion, R., & Roberts, R. (2004). Proper Use of ROC Curves in Intrusion/Anomaly Detection.
Technical Report CS-TR-871, Uni-versity of Newcastle upon Tyne, School of
Computing Science.Mbareen, S., Vaughn, R., & Bridges, S. (2004). Intrusion Sensor Data Fusion in an Intelligent
Intrusion Detection System Architecture. Proceedings of the 37th Annual Hawaii
International Conference, (pág. 10).
Mu-Chun SU, T., & Chang, H. (2002). Improving the self-organizing feature map algorithm
using an efficient initialization scheme. Tamkang Journal of Science and Engineering, 5,
35-48.
Muller, K.-R., Smola, A., Ratsch, G., Scholkopf, J., & Vapnik, V. (s.f.). Using support vector
machines for time series prediction.
Naiqi, W., Qian, Y., & Chen, G. (2006). A Novel Approach to Trojan Horse Detection by
Process Tracing. Proceedings of the 2006 IEEE International Conference, 721-726.
Navidi, W. (2014). Statistics for Engineers and Scientists 4th Edition. McGraw-Hill Education.
NIST. (01 de 04 de 2015). National Institute of Standards and Technology. Obtenido de
http://www.nist.gov/
Noel, S., Wijesekera, D., & Youman, C. (2002). Modern intrusion detection, data mining, and
degrees of attack guilt. Center for Secure Information Systems. George Mason
University. Obtenido de Securing the World's Cyber Infrastructure:
http://csis.gmu.edu/noel/pubs/IDS_chapter.pdf
Northcutt, S., Winters, S., Kent, K., & Ritchey, R. (2005). Inside Network Perimeter Security:
An Analyst Handbook (Second Edition ed.).
NSL-KDD. (s.f.). Obtenido de http://www.iscx.ca/NSL-KDD/Ocsa, A., Bedregal, C., & Cuadros-Vargas, E. (12-17 Aug. de 2007). DB-GNG: A constructive
self-organizing map based on density. Proceedings of the International Joint Conference
on Neural Networks (IJCNN07), 1953-1958. doi:10.1109/IJCNN.2007.4371257
Odgaard, P., & Wickerhauser, M. (9-13 de July de 2007). Karhunen-Loeve (PCA) based
detection of multiple oscillations in multiple measurement signals from large-scale
process plants. American Control Conference, 5893 - 5898.
doi:10.1109/ACC.2007.4282149
Olovsson, T. (1992). A Structured Approach to Computer Security. Chalmers University of
Technology.
Ortiz, A., Ortega, J., Díaz, A., & Prieto, A. (2011). Network Intrusion Prevention by Using
Hierarchical Self-Organizing Maps and Probability-Based Labeling. En S. B. Heidelberg
(Ed.), Advances in Computational Intelligence. 11th International Work-Conference on
Artificial Neural Networks, IWANN (págs. 232-239). Torremolinos-Málaga, Spain:
Lecture Notes in Computer Science.
Pai, P.-F., & Hong, W.-C. (2005). Support vector machines with simulated annealing algorithms
in electricity load forecasting. Energy Conversion and Management, 46(17), 2669-2688.
Panda, M., Abraham, A., & Patra, M. (2010). Discriminative multinomial naïve Bayes for
network intrusion detection. En IEEE (Ed.), 6th Conference on Information Assurance
and Security (IAS), (págs. 5-10).
Pena, J., Lozano, J., & Larranaga, P. (1999). An empirical comparison of four ini-tialization
methods for the k-means algorithm. Pattern Recogn, 20, 1027-1040.Pfahringer, B. (2000). Winning the FDD99 classification cup: bagged-boosting. SIGKDD
Explorations, 1(2), 65-66.
Powell, D., & Stroud, R. (2001). Conceptual Model and Architecture, Deliverable D2, Project
MAFTIA IST-1999-11583. Zurich: IBM Zurich Research Laboratory Research Report RZ
3377.
RAE. (01 de 04 de 2015). Real Academia Española. Obtenido de
http://lema.rae.es/drae/?val=seguridad
RAE. (01 de 04 de 2015). Real Academia Española. Obtenido de
http://lema.rae.es/drae/?val=seguro
RAE. (01 de 04 de 2015). Real Academia Española. Obtenido de
http://lema.rae.es/drae/?val=informat%C3%ADca
RAE. (01 de 04 de 2015). Real Academia Española. Obtenido de
http://lema.rae.es/drae/?val=anomal%C3%ADa
Raudys, S., & Jain, A. (Marzo de 1992). Small sample size efects in statistical pattern
recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(3), 252-264.
Reeves, C., & Singh Billan, G. (2001). Using Decision Surface Mapping in the Automatic
Recognition of Images. En Artificial Neural Nets and Genetic Algorithms (págs. 82-85).
Springer Vienna. doi:10.1007/978-3-7091-6230-9_19
Refaeilzadeh, P., Tang, L., & Lui, H. (6 de Noviembre de 2008). k-fold Cross-Validation.
Arizona State UniversityRichards, J., & Jia, X. (2006). Remote Sensing Digital Image Processing: An Introduction (4th
Edition ed.). Berlin Heidelberg, Germany: Springer-Verlag. Obtenido de
springeronline.com
Riveiro, M., Johansson, F., Falkman, G., & Ziemke, T. (2008). Supporting maritime situation
awareness using self organizing maps and Gaussian mixture models. Proceedings of the
2008 Conference on 10th Scandinavian Conference on Artificial Intelligence (SCAI
2008), 1, págs. 84-91.
Roesch, M. (7-12 de November de 1999). Snort-Lightweight Intrusion Detection for Networks.
Proceedings of LISA '99: 13th Systems Administration Conference, 229-238.
Roesch, M. (2005). Lightweight Intrusion Detection for Networks. Obtenido de www.snort.org
Rubio, G., Guillen, A., Herrera, L., Pomares, H., & Rojas, I. (2008). Use of specific-to-problem
kernel functions for time series modeling. ESTSP'08: Proceedings of the European
Symposium on Time Series Prediction, 177-186.
Rusell, D., & Gangemi, G. (1991). Computer Security Basics. California: O‟Reilly & Associates,
Inc., Sebastopol.
Saâdaoui, F. (2010). Acceleration of the EM algorithm via extrapolation methods: Review,
comparison and new methods. Computational Statistics & Data Analysis, 54(3), 750-766.
Sadkhan, S. (2009). On artificial intelligence approaches for network intrusion detection
systems. MASAUM Journal of Computing, 236-243.
Samad, T., & Harp, S. (1992). Self-Organization with Partial Data. Network, 205-212.Sandeep, K. (1995). Classification and Detection of Computer Intrusions.
citeseer.ist.psu.edu/kumar95classification.html. Obtenido de Purdue University.
SANS. (2015). SANS. Obtenido de http://www.sans.org/security-resources/idfaq/
Sapkal, S., Kakarwal, S., & Revankar, P. (13-15 de December de 2007). Analysis of
Classification by Supervised and Unsupervised Learning. Conference on Computational
Intelligence and Multimedia Applications, 1, 280 - 284. doi:10.1109/ICCIMA.2007.237
Scholkopf, B., & Smola, A. (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.
Schott, J. (Diciembre de 1998). Estimating correlation matrices that have common eigenvectors.
Computational Statistics & Data Analysis(27), 445-459.
Schwartz, S., & Carpenter, K. (August de 1999). The right answer for the wrong question:
consequences of type III error for public health research. Am J Public Health, 89(8),
1175–1180. doi:10.1007/978-1-4899-4467-2
Schweitzer, F. (1997). Self-Organization of Complex Structures: from individual to collective
dynamics. Berlin: CRC Press.
Security, I. f. (01 de 04 de 2015). Institute for Internet Security. Obtenido de
http://www.internet-sicherheit.de/en/research/recent-projects/internet-early-warningsystems/internet-analysis-system/recent-results/
Smith, L. (2002). Tutorial on Principal Components Analysis.
Spafford, E. (1989). Crisis and Aftermath. Communications of the ACM, 678-687.
SRI. (s.f.). SRI International. Obtenido de http://www.sri.com/Strehl, A., & Ghosh, J. (2002). Cluster ensembles – a knowledge reuse framework for combining
partitionings. Proceedings of AAAI2002, 93-98.
Tasdemir, K., Milenov, P., & Tapsall, B. (March de 2011). Topology-based hierarchical
clustering of self-organizing maps. IEEE Trans Neural Netw, 22(3), 474-485.
doi:10.1109/TNN.2011.2107527.
Tatsuoka, M. (Junio de 1974). Multivariante Analysis: Techniques for Educational and
Psychological Research. 39(2), 269-274.
Tavallaee, M., Stakhanova, N., & Ghorbani, A. (2010). Toward credible evaluation of anomalybased intrusion-detection methods. IEEE Transactions On Systems, Man, And
Cybernetics—Part C: Applications And Reviews, 516-524.
doi:10.1109/TSMCC.2010.2048428
Tay. (2001). Application of support vector machines in financial time series forecasting. Omega:
The International Journal of Management Science, 29(4), 309-317.
Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition. Burlington , USA: Academic
Press - Elsevier .
Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition, 4th Edition. Elsevier Inc.
Tipton, H., & Krause, M. (2006). Information Security Management Handbook (Vol. 5).
Auerbach Publications.
Turk, M., & Pentland, A. (3-6 Jun 1991). Face recognition using eigenfaces. Computer Vision
and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society
Conference on, (págs. 586 - 591). doi:10.1109/CVPR.1991.139758University of California. (28 de October de 1999). (Information and Computer Science,
University of California. Irvine, CA 92697-3425.) Obtenido de
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
University of California. (28 de October de 1999). KDD Cup 1999 Data. (Irvine) Recuperado el
15 de Agost de 2015, de The UCI KDD Archive:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Vapnik, V. (1998). Statistical Learning Theory. New York: John Wiley and Sons, Inc.
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM toolbox. Helsinki
University of Technology. Finland: Helsinki University of Technology.
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (April de 2000). SOM Toolbox for
Matlab 5. Report A57, Laboratory of Computer and Information Science (CIS).
Recuperado el 2016, de http://www.cis.hut.fi/projects/somtoolbox/
VIM, W. G.—B. (2008). Bureau International des Poids et Mesures. Recuperado el 26 de Junio
de 2015, de Common Documents:
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
Wang Ko, C. C. (1996). Execution Monitoring of Security Critical Programs in a Distributed
System: A Specification-Based Approach. Dissertation Doctor of Philosophy.
Wang, H., & Hu, Z. (22 de October de 2009). On EM Estimation for Mixture of Multivariate tDistributions. Neural Processing Letters, 243-256. doi:10.1007/s11063-009-9121-5Wenli, L., Xiaolong , Z., Tao, W., & Hiu, W. (2014). Collaboration Pattern and Topic Analysis
on Intelligence and Security Informatics Research. INTELLIGENCE AND SECURITY
INFORMATICS, 39-45.
Wu, S. X., & Banzhaf, W. (2010). The use of computational intelligence in intrusion detection
systems: A review. Applied Soft Computing, 1-35.
Wu, S., & Banzhaf, W. (2010). The use of computational intelligence in intrusion detection
systems: A review. Applied Soft Computing, 1-35.
Wu, W., Massart, D., & Jong, S. (1997). The kernel pca algorithms for wide data part i: Theory
and algorithms. Chemometrics and Intelligent Laboratory Systems, 36(2), 165-172.
Ylonen, T. (1996). SSH - Secure Login Connections over the Internet. En Proceedings of the 6th
Security Symposium) (USENIX Association: Berkeley, CA).
Zargari, S., & Voorhis, D. (2012). Feature Selection in the Corrected KDD-dataset. EIDWT '12
Proceedings of the 3rd International Conference on Emerging Intelligent Data and Web
Technologies, (págs. 174-180).
Zhang, D.-Q., & Chen, S.-C. (2003). Clustering incomplete data using kernel-based fuzzy cmeans algorithm. Neural Process, 18(3), 155-162.
Ziolko, S., Weissfeld, L., Klunk, W., Mathis, C., Hoge, J., Lopresti, B., . . . Price, J. (2006).
Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid
imaging studies in Alzheimer's disease. NeuroImage, 33(1), 94-102.
Zseby, T. (2003). Stratification Strategies for Sampling-based Non-intrusive Measurement of
One-way Delay. Proceedings of Passive and Active Measurement Workshop, 171-179.Lippmann, R., Haines, J., Fried, D., Korba, J. and Das, K. (2000). The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks, 34(4), pp.579-595 | |