dc.contributorCorporación Universidad de la Costa
dc.creatorAbadias, Luciano
dc.creatorAlvarez, Edgardo
dc.creatorDíaz , Stiven
dc.date2022-06-07T17:41:39Z
dc.date2022-10-14
dc.date2022-06-07T17:41:39Z
dc.date2021-10-14
dc.date.accessioned2023-10-03T19:05:46Z
dc.date.available2023-10-03T19:05:46Z
dc.identifier0022-247X
dc.identifierhttps://hdl.handle.net/11323/9214
dc.identifierhttps://doi.org/10.1016/j.jmaa.2021.125741
dc.identifier10.1016/j.jmaa.2021.125741
dc.identifier1096-0813
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167632
dc.descriptionThe main goal in this paper is to study asymptotic behavior in Lp(RN ) for the solutions of the fractional version of the discrete in time N-dimensional diffusion equation, which involves the Caputo fractional h-difference operator. The techniques to prove the results are based in new subordination formulas involving the discrete in time Gaussian kernel, and which are defined via an analogue in discrete time setting of the scaled Wright functions. Moreover, we get an equivalent representation of that subordination formula by Fox H-functions.
dc.format23 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherAcademic Press Inc.
dc.publisherUnited States
dc.relationJournal of Mathematical Analysis and Applications
dc.relation[1] L. Abadias, E. Alvarez, Uniform stability for fractional Cauchy problems and applications, Topol. Methods Nonlinear Anal. 52 (2) (2018) 707–728.
dc.relation[2] L. Abadias, E. Alvarez, Asymptotic behaviour for the discrete in time heat equation, Manuscript available at https:// arxiv.org/pdf/2102.11109.pdf.
dc.relation[3] L. Abadias, M. De León, J.L. Torrea, Non-local fractional derivatives. Discrete and continuous, J. Math. Anal. Appl. 449 (1) (2017) 734–755.
dc.relation[4] L. Abadias, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Appl. Anal. 95 (6) (2016) 1347–1369.
dc.relation[5] L. Abadias, P. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Funct. Spaces 2015 (2015) 158145, https://doi.org/10.1155/2015/158145.
dc.relation[6] M. Aigner, Diskrete Mathematik, 6th ed., Friedr. Vieweg & Sohn, 2006.
dc.relation[7] E. Alvarez, S. Diaz, C. Lizama, C-semigroups, subordination principle and the Lévy α-stable distribution on discrete time, Commun. Contemp. Math. (2020).
dc.relation[8] E.G. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, University Press Facilities, Eindhoven University of Technology, 2001.
dc.relation[9] O. Ciaurri, T.A. Gillespie, L. Roncal, J.L. Torrea, J.L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math. 132 (2017) 109–131.
dc.relation[10] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea, J.L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018) 688–738.
dc.relation[11] E.B. Davies, Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1) (1988) 16–32.
dc.relation[12] E.B. Davies, Lp spectral theory of higher-order elliptic differential operators, Bull. Lond. Math. Soc. 29 (5) (1997) 513–546.
dc.relation[13] M. Del Pino, J. Dolbeault, Asymptotic behavior of nonlinear diffusions, Math. Res. Lett. 10 (4) (2003) 551–557.
dc.relation[14] J. Duoandikoetxea, J. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 315 (6) (1992) 693–698.
dc.relation[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, H. Bateman, Higher Transcenden-tal Functions, vol. III, McGraw–Hill, New York, 1953.
dc.relation[16] A. Erdélyi, F.G. Tricomi, The aymptotic expansion of a ratio of Gamma functions, Pac. J. Math. 1 (1951) 133–142.
dc.relation[17] M. Escobedo, E. Zuazua, Large time behavior for convection-diffusion equations in RN , J. Funct. Anal. 100 (1) (1991) 119–161.
dc.relation[18] L.C. Evans, Partial Differential Equations, second ed., Graduate Studies in Mathematics, vol. 19, AMS Publications, Providence, Rhode Island, 2014.
dc.relation[19] J. Fourier, Théorie Analytique de la Chaleur, Reprint of the 1822 original Cambridge Library Collection, Cambridge University Press, Cambridge, 2009.
dc.relation[20] A. Gmira, L. Veron, Asymptotic behaviour of the solution of a semilinear parabolic equation, Monatshefte Math. 94 (1982) 299–311.
dc.relation[21] A. Gmira, L. Veron, Large time behaviour of the solutions of a semilinear parabolic equation in RN , J. Funct. Anal. 53 (1984) 258–276.
dc.relation[22] C. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Isr. J. Math. 236 (2020) 533–589.
dc.relation[23] C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer International Publishing, 2015.
dc.relation[24] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 6th edition, Academic Press, Inc., San Diego, CA, 2000.
dc.relation[25] A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds, manuscript available at www.ma.ic.ac.uk/~grigor, 1999.
dc.relation[26] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equ. 263 (1) (2017) 149–201.
dc.relation[27] A.A. Kilbas, M. Saigo, H-Transforms, Theory and Applications, Analytical Methods and Special Functions, vol. 9, 2004.
dc.relation[28] S. Kusuoka, D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. Math. 127 (1) (1988) 165–189.
dc.relation[29] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. Math. 124 (1) (1986) 1–21.
dc.relation[30] C. Lizama, lp-Maximal regularity for fractional difference equations on UMD spaces, Math. Nachr. 288 (17/18) (2015) 2079–2092.
dc.relation[31] C. Lizama, The Poisson distribution, abstract fractional difference equations and stability, Proc. Am. Math. Soc. 145 (9) (2017) 3809–3827.
dc.relation[32] C. Lizama, L. Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst. 38 (3) (2018) 1365–1403.
dc.relation[33] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010.
dc.relation[34] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
dc.relation[35] D. Mozyrska, M. Wyrwas, The Z-transform method and delta type fractional difference operators, Discrete Dyn. Nat. Soc. 2015 (2015) 852734, https://doi.org/10.1155/2015/852734.
dc.relation[36] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Camb. Philos. Soc. 128 (1) (2000) 45–64.
dc.relation[37] J.R. Norris, Long-time behaviour of heat flow: global estimates and exact asymptotics, Arch. Ration. Mech. Anal. 140 (2) (1997) 161–195.
dc.relation[38] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators, Comput. Math. Appl. 80 (4) (2020) 69–92.
dc.relation[39] A. Zygmund, Trigonometric Series, Vols. I, II, 2nd ed., Cambridge University Press, New York, 1959.
dc.relation23
dc.relation1
dc.relation507
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights© 2021 Elsevier Inc. All rights reserved.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0022247X21008209?via%3Dihub#!
dc.subjectSubordination formula
dc.subjectScaled Wright function
dc.subjectFractional difference equations
dc.subjectLarge-time behavior
dc.subjectDecay of solutions
dc.subjectDiscrete fundamental solution
dc.titleSubordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución