dc.creator | Parra, Mario A. | |
dc.creator | Orellana, Paulina | |
dc.creator | Leon, Tomas | |
dc.creator | Cabello G., Victoria | |
dc.creator | Henriquez, Fernando | |
dc.creator | Gómez, Rodrigo | |
dc.creator | Avalos, Constanza | |
dc.creator | Damian, Andrés | |
dc.creator | Slachevsky, Andrea | |
dc.creator | Ibáñez, Agustín | |
dc.creator | Zetterberg, Henrik | |
dc.creator | Tijms, Betty M. | |
dc.creator | Yokoyama, Jennifer S. | |
dc.creator | Piña-Escudero, Stefanie D. | |
dc.creator | Nicholas Cochran, J. | |
dc.creator | Matallana, Diana L. | |
dc.creator | Acosta, Daisy | |
dc.creator | Allegri, Ricardo Francisco | |
dc.creator | Arias-Suárez, Bianca P. | |
dc.creator | Barra, Bernardo | |
dc.creator | Behrens, Maria Isabel | |
dc.creator | Brucki, Sonia M. D. | |
dc.creator | Busatto, Geraldo | |
dc.creator | Caramelli, Paulo | |
dc.creator | Castro-Suarez, Sheila | |
dc.creator | Contreras, Valeria | |
dc.creator | Custodio, Nilton | |
dc.creator | Dansilio, Sergio | |
dc.creator | De la Cruz-Puebla, Myriam | |
dc.creator | Cruz de Souza, Leonardo | |
dc.creator | Diaz, Monica M. | |
dc.creator | Duque, Lissette | |
dc.creator | Farías, Gonzalo A. | |
dc.creator | Ferreira, Sergio T. | |
dc.creator | Magrath Guimet, Nahuel | |
dc.creator | Kmaid, Ana | |
dc.creator | Lira, David | |
dc.creator | Lopera, Francisco | |
dc.creator | Mar Meza, Beatriz | |
dc.creator | Miotto, Eliane C. | |
dc.creator | Nitrini, Ricardo | |
dc.creator | Núñez, Alberto | |
dc.creator | O’Neill, Santiago | |
dc.creator | Ochoa, John | |
dc.creator | Pintado-Caipa, Maritza | |
dc.creator | França Resende, Elisa de Paula | |
dc.creator | Risacher, Shannon | |
dc.creator | Rojas, Luz Angela | |
dc.creator | Sabaj, Valentina | |
dc.creator | Schilling, Lucas | |
dc.creator | Sellek, Allis F. | |
dc.creator | Sosa, Ana | |
dc.creator | Takada, Leonel T. | |
dc.creator | Teixeira, Antonio L. | |
dc.creator | Unaucho-Pilalumbo, Martha | |
dc.creator | Duran-Aniotz, Claudia | |
dc.date | 2023-07-31T14:25:50Z | |
dc.date | 2023-07-31T14:25:50Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:05:38Z | |
dc.date.available | 2023-10-03T19:05:38Z | |
dc.identifier | Yonatan Sanz Perl, Sol Fittipaldi, Cecilia Gonzalez Campo, Sebastián Moguilner, Josephine Cruzat, Matias E Fraile-Vazquez, Rubén Herzog, Morten L Kringelbach, Gustavo Deco, Pavel Prado, Agustin Ibanez, Enzo Tagliazucchi, Model-based whole-brain perturbational landscape of neurodegenerative diseases, eLife, 10.7554/eLife.83970, 12, (2023). | |
dc.identifier | 552-5260 | |
dc.identifier | https://hdl.handle.net/11323/10349 | |
dc.identifier | 10.7554/eLife.83970 | |
dc.identifier | 1552-5279 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC – Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167598 | |
dc.description | Limited knowledge on dementia biomarkers in Latin American and Caribbean (LAC) countries remains a serious barrier. Here, we reported a survey to explore the ongoing work, needs, interests, potential barriers, and opportunities for future studies related to biomarkers. The results show that neuroimaging is the most used biomarker (73%), followed by genetic studies (40%), peripheral fluids biomarkers (31%), and cerebrospinal fluid biomarkers (29%). Regarding barriers in LAC, lack of funding appears to undermine the implementation of biomarkers in clinical or research settings, followed by insufficient infrastructure and training. The survey revealed that despite the above barriers, the region holds a great potential to advance dementia biomarkers research. Considering the unique contributions that LAC could make to this growing field, we highlight the urgent need to expand biomarker research. These insights allowed us to propose an action plan that addresses the recommendations for a biomarker framework recently proposed by regional experts. | |
dc.format | 15 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | John Wiley & Sons Inc. | |
dc.publisher | United States | |
dc.relation | Alzheimer's and Dementia | |
dc.relation | 1. Baez S, Ibanez A. Dementia in Latin America: an Emergent Silent Tsunami. Front Aging Neurosci. 2016;8:253. | |
dc.relation | 2. Parra MA, Baez S, Allegri R, et al. Dementia in Latin America: assessing
the present and envisioning the future. Neurology. 2018;90:222-231. | |
dc.relation | 3. Parra MA, Baez S, Sedeno L, et al. Dementia in Latin America:
paving the way toward a regional action plan. Alzheimers Dement.
2021;17:295-313. | |
dc.relation | 4. Nitrini R, Barbosa MT, Dozzi Brucki SM, Yassuda MS, Caramelli P. Current trends and challenges on dementia management and research in
Latin America. J Glob Health. 2020;10:010362. | |
dc.relation | 5. Manes F. The huge burden of dementia in Latin America. Lancet Neurol.
2016;15:29. | |
dc.relation | 6. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The
global prevalence of dementia: a systematic review and metaanalysis.
Alzheimers Dement. 2013;9:63-75.e2. | |
dc.relation | 7. Nitrini R, Bottino CM, Albala C, et al. Prevalence of dementia in
Latin America: a collaborative study of population-based cohorts. Int
Psychogeriatr. 2009;21:622-630. | |
dc.relation | 8. Wolters FJ, Chibnik LB, Waziry R, et al. Twenty-seven-year time trends
in dementia incidence in Europe and the United States: the Alzheimer
Cohorts Consortium. Neurology. 2020;95:e519-e531. | |
dc.relation | 9. Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu Y-T, Prina M. World
alzheimer report 2015 – The global impact of dementia: an analysis of
prevalence, incidence, costs and trends. London: Alzheimer’s Disease
International, 2015. 84 p. | |
dc.relation | 10. World Bank. List of economies. June 2020. https://www.hupo.
org/resources/Documents/HPP/World%20Bank%20list%20of%
20economies%20(June%202020).pdf | |
dc.relation | 11. Jack CR, Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers
Dement. 2018;14:535-562. | |
dc.relation | 12. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280-
292. | |
dc.relation | 13. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria.
Lancet Neurol. 2007;6:734-746. | |
dc.relation | 14. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan
EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health
and Human Services Task Force on Alzheimer’s Disease. Neurology.
1984;34:939-944. | |
dc.relation | 15. El Kadmiri N, Said N, Slassi I, El Moutawakil B, Nadifi S. Biomarkers for Alzheimer disease: classical and novel candidates’ review.
Neuroscience. 2018;370:181-190. | |
dc.relation | 16. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease.
Lancet Neurol. 2003;2:605-613. | |
dc.relation | 17. Burger nee Buch K, Padberg F, Nolde T, et al. Cerebrospinal fluid tau
protein shows a better discrimination in young old (<70 years) than
in old old patients with Alzheimer’s disease compared with controls.
Neurosci Lett. 1999;277:21-24. | |
dc.relation | 18. Hampel H, Buerger K, Zinkowski R, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer
disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry.
2004;61:95-102. | |
dc.relation | 19. Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K.
Core candidate neurochemical and imaging biomarkers of Alzheimer’s
disease. Alzheimers Dement. 2008;4:38-48. | |
dc.relation | 20. Mattsson N, Zetterberg H, Hansson O, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.
JAMA. 2009;302:385-393. | |
dc.relation | 21. Bobinski M, de Leon MJ, Wegiel J, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 2000;95:721-
725. | |
dc.relation | 22. Zarow C, Vinters HV, EllisWG, et al. Correlates of hippocampal neuron
number in Alzheimer’s disease and ischemic vascular dementia. Ann
Neurol. 2005;57:896-903. | |
dc.relation | 23. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and
long-term outcome. JAMA. 2001;286:2120-2127. | |
dc.relation | 24. de Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive
decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-Dglucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U
S A. 2001;98:10966-10971. | |
dc.relation | 25. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic
changes accompanying conversion of mild cognitive impairment into
Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging.
2003;30:1104-1113. | |
dc.relation | 26. Koychev I, Gunn RN, Firouzian A, et al. PET tau and amyloidbeta burden in mild Alzheimer’s disease: divergent relationship with
age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis.
2017;60:283-293. | |
dc.relation | 27. Ossenkoppele R, Smith R, Ohlsson T, et al. Associations between tau,
Abeta, and cortical thickness with cognition in Alzheimer disease.
Neurology. 2019;92:e601-e612. | |
dc.relation | 28. Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab
JJ. Influence of tau PET, amyloid PET, and hippocampal volume on
cognition in Alzheimer disease. Neurology. 2018;91:e859-e866. | |
dc.relation | 29. Jack CR, Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased
descriptive classification scheme for Alzheimer disease biomarkers.
Neurology. 2016;87:539-547. | |
dc.relation | 30. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx.
2004;1:226-234. | |
dc.relation | 31. Thambisetty M, Lovestone S. Blood-based biomarkers of Alzheimer’s
disease: challenging but feasible. Biomark Med. 2010;4:65-79. | |
dc.relation | 32. Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based
proteomic biomarker research in Alzheimer’s disease. Prog Neurobiol.
2013;101-102:1-17. | |
dc.relation | 33. Zetterberg H, Schott JM. Blood biomarkers for Alzheimer’s disease and related disorders. Acta Neurol Scand. 2022;146(1):51-
55. | |
dc.relation | 34. Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s
disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16:10. | |
dc.relation | 35. van der Flier WM, Scheltens P. Epidemiology and risk factors of
dementia. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 5):v2-7. | |
dc.relation | 36. Goate A. Segregation of a missense mutation in the amyloid betaprotein precursor gene with familial Alzheimer’s disease. J Alzheimers
Dis. 2006;9:341-347. | |
dc.relation | 37. Cruts M, Hendriks L, Van Broeckhoven C. The presenilin genes: a new
gene family involved in Alzheimer disease pathology. Hum Mol Genet.
1996;5 Spec No: 1449-55. | |
dc.relation | 38. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973-
977. | |
dc.relation | 39. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded
GGGGCC hexanucleotide repeat in noncoding region of C9ORF72
causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245-
256. | |
dc.relation | 40. Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in
progranulin cause tau-negative frontotemporal dementia linked to
chromosome 17. Nature. 2006;442:916-919. | |
dc.relation | 41. Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43:815-825. | |
dc.relation | 42. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of
apolipoprotein E allele epsilon 4 with late-onset familial and sporadic
Alzheimer’s disease. Neurology. 1993;43:1467-1472. | |
dc.relation | 43. Duran-Aniotz C, Orellana P, Leon Rodriguez T, et al. Systematic review: genetic, neuroimaging, and fluids biomarkers for frontotemporal dementia across Latin America countries. Front Neurol.
2021;12:663407. | |
dc.relation | 44. Sexton C, Snyder HM, Chandrasekaran L, Worley S, Carrillo MC.
Expanding representation of low and middle income countries in
global dementia research: commentary from the Alzheimer’s. Association Front Neurol. 2021;12:633777. | |
dc.relation | 45. Tutor CA, Frias L. Development of PET in Latin America Experience of
the first PET-Cyclotron Center. World J Nucl Med. 2002;1:219. | |
dc.relation | 46. Allegri RF, Chrem Mendez P, Calandri I, et al. Prognostic value of ATN
Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement
(Amst). 2020;12:e12026. | |
dc.relation | 47. Allegri RF, Chrem Mendez P, Russo MJ, et al. Biomarkers of
Alzheimer’s disease in mild cognitive impairment: experience in a
memory clinic from Latin America. Neurologia (Engl Ed). 2021;36:201-
208. | |
dc.relation | 48. Cecchini MA, Yassuda MS, Squarzoni P, et al. Deficits in short-term
memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer’s
disease continuum. Brain Cogn. 2021;152:105749. | |
dc.relation | 49. Damian A, Portugal F, Niell N, et al. Clinical impact of PET with (18)FFDG and (11)C-PIB in patients with dementia in a developing country.
Front Neurol. 2021;12:630958. | |
dc.relation | 50. Faria DP, Duran FL, Squarzoni P, et al. Topography of 11C-Pittsburgh
compound B uptake in Alzheimer’s disease: a voxel-based investigation
of cortical and white matter regions. Braz J Psychiatry. 2019;41:101-
111. | |
dc.relation | 51. Coutinho AM, Busatto GF, de Gobbi Porto FH, et al. Brain PET amyloid and neurodegeneration biomarkers in the context of the 2018
NIA-AA research framework: an individual approach exploring clinicalbiomarker mismatches and sociodemographic parameters. Eur J Nucl
Med Mol Imaging. 2020;47:2666-2680. | |
dc.relation | 52. de Souza GS, Andrade MA, Borelli WV, et al. Amyloid-beta PET classification on cognitive aging stages using the centiloid scale. Mol Imaging
Biol. 2022;24:394-403. | |
dc.relation | 53. Hansen EO, Dias NS, Burgos ICB, et al. Millipore xMap(R) Luminex
(HATMAG-68K): an accurate and cost-effective method for evaluating Alzheimer’s biomarkers in cerebrospinal fluid. Front Psychiatry.
2021;12:716686. | |
dc.relation | 54. Madeira C, Lourenco MV, Vargas-Lopes C, et al. d-serine levels in
Alzheimer’s disease: implications for novel biomarker development.
Transl Psychiatry. 2015;5:e561. | |
dc.relation | 55. Lourenco MV, Ribeiro FC, Sudo FK, et al. Cerebrospinal fluid irisin correlates with amyloid-beta, BDNF, and cognition in Alzheimer’s disease.
Alzheimers Dement (Amst). 2020;12:e12034. | |
dc.relation | 56. Lourenco MV, Ribeiro FC, Santos LE, et al. Cerebrospinal fluid neurotransmitters, cytokines, and chemokines in Alzheimer’s and lewy body
diseases. J Alzheimers Dis. 2021;82:1067-1074. | |
dc.relation | 57. Madeira C, Vargas-Lopes C, Brandao CO, et al. Elevated glutamate
and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front Psychiatry. 2018;9:
561. | |
dc.relation | 58. Reiman EM, Quiroz YT, Fleisher AS, et al. Brain imaging and fluid
biomarker analysis in young adults at genetic risk for autosomal
dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a
case-control study. Lancet Neurol. 2012;11:1048-1056. | |
dc.relation | 59. Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers
for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol.
2018;14:639-652. | |
dc.relation | 60. Ibanez A, Parra MA, Butler C, Latin A, the Caribbean Consortium on
D. The Latin America and the Caribbean Consortium on Dementia
(LAC-CD): from networking to research to implementation science.
J Alzheimers Dis. 2021;82:S379-S394. | |
dc.relation | 61. Ibanez A, Yokoyama JS, Possin KL, et al. The multi-partner consortium to expand dementia Research in Latin America (ReDLat): driving multicentric research and implementation science. Front Neurol.
2021;12:631722. | |
dc.relation | 62. Reyes-Pablo AE, Campa-Cordoba BB, Luna-Viramontes NI, et al.
National dementia BioBank: a strategy for the diagnosis and study of
neurodegenerative diseases in Mexico. J Alzheimers Dis. 2020;76:853-
862. | |
dc.relation | 63. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s diseasepreparing for a new era of disease-modifying therapies. Mol Psychiatry.
2021;26:296-308. | |
dc.relation | 64. Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar
degeneration. Nat Med. 2020;26:387-397. | |
dc.relation | 65. Khan TK, Alkon DL. Peripheral biomarkers of Alzheimer’s disease.
J Alzheimers Dis. 2015;44:729-744. | |
dc.relation | 66. Ogonowski N, Salcidua S, Leon T, et al. Systematic review: microRNAs
as potential biomarkers in mild cognitive impairment diagnosis. Front
Aging Neurosci. 2021;13:807764. | |
dc.relation | 67. Alawode DOT, Heslegrave AJ, Ashton NJ, et al. Transitioning from
cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer’s disease. J Intern Med. 2021;290:583-
601. | |
dc.relation | 68. Wojsiat J, Laskowska-Kaszub K, Mietelska-Porowska A, Wojda U.
Search for Alzheimer’s disease biomarkers in blood cells: hypothesesdriven approach. Biomark Med. 2017;11:917-931. | |
dc.relation | 69. O’Bryant SE, Mielke MM, Rissman RA, et al. Blood-based biomarkers
in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers
Dement. 2017;13:45-58. | |
dc.relation | 70. Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet
Neurol. 2022;21:66-77. | |
dc.relation | 71. Ashton NJ, Kiddle SJ, Graf J, et al. Blood protein predictors of brain
amyloid for enrichment in clinical trials. Alzheimers Dement (Amst).
2015;1:48-60. | |
dc.relation | 72. Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug
development for Alzheimer’s disease. Alzheimers Res Ther. 2019;11:76. | |
dc.relation | 73. Slachevsky A, Zitko P, Martinez-Pernia D, et al. GERO Cohort Protocol, Chile, 2017-2022: community-based cohort of functional decline
in subjective cognitive complaint elderly. BMC Geriatr. 2020;20:505. | |
dc.relation | 74. Magaki S, Yong WH, Khanlou N, Tung S, Vinters HV. Comorbidity
in dementia: update of an ongoing autopsy study. J Am Geriatr Soc.
2014;62:1722-1728. | |
dc.relation | 75. Gullett JM, Albizu A, Fang R, et al. Baseline neuroimaging predicts
decline to dementia from amnestic mild cognitive impairment. Front
Aging Neurosci. 2021;13:758298. | |
dc.relation | 76. Shiino A, Shirakashi Y, Ishida M, Tanigaki K, Japanese Alzheimer’s Disease Neuroimaging I. Machine learning of brain structural biomarkers
for Alzheimer’s disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population.
Alzheimers Dement (Amst). 2021;13:e12246. | |
dc.relation | 77. Zhou Y, Song Z, Han X, Li H, Tang X. Prediction of Alzheimer’s disease
progression based on magnetic resonance imaging. ACS Chem Neurosci.
2021;12:4209-4223. | |
dc.relation | 78. Di Tella S, Cabinio M, Isernia S, et al. Neuroimaging biomarkers predicting the efficacy of multimodal rehabilitative intervention in the
Alzheimer’s Dementia Continuum Pathology. Front Aging Neurosci.
2021;13:735508. | |
dc.relation | 79. Menon MC, Murphy B, Heeger PS. Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol.
2017;28:735-7347. | |
dc.relation | 80. Teunissen CE, Otto M, Engelborghs S, et al. White paper by the Society for CSF Analysis and Clinical Neurochemistry: overcoming barriers
in biomarker development and clinical translation. Alzheimers Res Ther.
2018;10:30. | |
dc.relation | 81. Bachli MB, Sedeno L, Ochab JK, et al. Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach. Neuroimage. 2020;208:116456. | |
dc.relation | 735 | |
dc.relation | 721 | |
dc.relation | 2 | |
dc.relation | 19 | |
dc.rights | © 2022 The Authors. Alzheimer’s & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer’s Association. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.12757 | |
dc.subject | Dementia | |
dc.subject | Latin American | |
dc.subject | Biomarkers | |
dc.title | Biomarkers for dementia in Latin American countries: gaps and opportunities | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.coverage | Latin America | |