Método on-line para sintonización óptima de controladores PID utilizando interface estándar OPC

dc.creatorRiano , Cristhian
dc.creatorDíaz-Rodríguez, Jorge Luis
dc.creatorMejía Bugallo, Diego Armando
dc.date2023-04-11T15:55:00Z
dc.date2023-04-11T15:55:00Z
dc.date2022
dc.date.accessioned2023-10-03T19:04:21Z
dc.date.available2023-10-03T19:04:21Z
dc.identifierC. Riaño Jaimes, J. Diaz Rodríguez & D. Mejía Bugallo, “On-line method for optimal tuning of PID controllers using standard OPC interface”, INGECUC, vol. 18, no. 2, pp. 13–26. DOI: http://doi.org/10.17981/ingecuc.18.2.2022.02
dc.identifier2382-4700
dc.identifierhttps://hdl.handle.net/11323/9981
dc.identifier10.17981/ingecuc.18.2.2022.02
dc.identifier0122-6517
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167395
dc.descriptionIntroducción— El controlado PID es el algoritmo matemático mayormente utilizado como estrategia de control regulatorio en entornos industriales. Las aplicaciones son variadas; sin embargo, su respuesta depende del cálculo adecuado de sus tres parámetros: el proporcional, el derivativo y el integral. La sintonización analítica y algunos métodos experimentales resuelven el problema, pero ahora, dentro del contexto digital y de integración de procesos se habilitan nuevas posibilidades de sintonización. Objetivo— Obtener de manera automática y remota los parámetros óptimos del controlador PID aprovechando una conexión online vía el protocolo de comunicación OPC para analizar la respuesta transitoria del sistema. Metodología— El estudio se realiza en tres grandes fases, se inicia con un proceso térmico PD3 SMAR con conexión vía OPC, en esta fase se construye analíticamente el modelo matemático del proceso basado en leyes fundamentales. En la segunda fase utilizando un método analítico de sintonización se crea la arquitectura de control PID sobre la cual se realiza la experimentación online. En la tercera fase se implementan los algoritmos genéticos para sintonización automática, extrayendo medidas de rendimiento del controlador PID a través de la respuesta transitario del proceso y se determinar de manera óptima los valores para los parámetros proporcional, derivativo e integral. Resultados— El método de sintonización automática fue probado con dos procesos industriales correctamente instrumentados y se puedo observar el potencial de aplicación por su buen resultado además de que no se requiere de conocimientos matemáticos específicos en comparación con métodos convencionales de sintonización. Conclusiones— El método de sintonización automática consigue ser empleado de forma remota para calcular los parámetros óptimos de un controlador PID. Los parámetros son calculados a partir de la respuesta transitoria y de la definición de unos criterios de diseño adaptables a cualquier necesidad de control, de respuesta y de proceso.
dc.descriptionIntroduction— The controlled PID is the most widely used mathematical algorithm as a regulatory control strategy in industrial environments. The applications are varied; however, its answer depends on the proper calculation of its three parameters: the proportional, the derivative, and the integral. Analytical tuning and experimental methods solve the problem, but new tuning possibilities are now enabled within the digital and process integration context. Objective— Automatically and remotely obtain the optimal parameters of the PID controller, taking advantage of an online connection via the OPC communication protocol to analyze the transient response of the system. Methodology— The study is carried out in three main phases; it begins with a PD3 SMAR thermal process with connection via OPC; in this phase, the mathematical model of the process is built analytically based on fundamental laws. In the second phase, using an analytical tuning method, the PID control architecture is created on which the online experimentation is carried out. In the third phase, the genetic algorithms for automatic tuning are implemented, extracting performance measures from the PID controller through the transient response of the process and optimally determining the values for the proportional, derivative, and integral parameters. Results— The automatic tuning method was tested with two properly instrumented industrial processes. The potential for application can be seen due to its good result and because it does not require specific mathematical knowledge compared to conventional tuning methods. Conclusions— The automatic tuning method can be used remotely to calculate the optimal parameters of a PID controller. The parameters are calculated from the transient response and the definition of design criteria adaptable to any need for control, response, and process.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] R. Borase, D. Maghade, S. Sondkar & S. Pawar, “A review of PID control, tuning methods and applications,” Int. J. Dyn. Control, vol. 9, no. 5, pp. 818–827, Jul. 2020. https://doi.org/10.1007/s40435-020-00665-4
dc.relation[2] V. Dubey, H. Goud & P. Sharma, “Role of PID Control Techniques in Process Control System: A Review,” in P. Nanda, V. K. Verma, S. Srivastava, R. K. Gupta & A. P. Mazumdar (eds), Data Engineering for Smart Systems. Lectures Notes in Networks and Systems, JAI, IN: Springer, 2021, pp. 659–670. https://doi. org/10.1007/978-981-16-2641-8_62
dc.relation[3] S. Albatran, I. Smadi & H. Bataineh, “Generalized optimal and explicit PI/PID tuning formulas for underdamped second-order systems,” Int. J. Control Autom. Syst., vol. 18, no. 6, pp. 1023–1032, Nov. 2019. https:// doi.org/10.1007/s12555-019-0178-2
dc.relation[4] A. Bagis, “Determination of the PID controller parameters by modified genetic algorithm for improved performance,” J. Inf. Sci. Eng., vol. 23, no. 5, pp. 1469–1480, Sep. 2007. https://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=50_864
dc.relation[5] Y. Chen, Y. Ma & W. Yun, “Application of improved genetic algorithm in PID controller parameters optimization,” TELKOMNIKA, vol. 11, no. 3, pp. 1524–1530, Jan. 2013. https://doi.org/10.11591/telkomnika. v11i3.2301
dc.relation[6] C. Huang & Y. Bai, “PID Tuning of Networked Feedforward-Feedback Control Systems,” in Z. Hou (eds), Lecture Notes in Electrical Engineering. Measuring Technology and Mechatronics Automation in Electrical Engineering, NYC, NY, USA: Springer, 2012, pp. 369–376. https://doi.org/10.1007/978-1-4614-2185-6_45
dc.relation[7] S. Saxena & Y. Hote, “Internal model control based PID tuning using first-order filter,” Int. J. Control Autom. Syst., vol. 15, no. 1, pp. 149–159, Dec. 2016. https://doi.org/10.1007/s12555-015-0115-y
dc.relation[8] Y. Mitsukura, T. Yamamoto & M. Kaneda, “A design of self-tuning PID controllers using a genetic algorithm,” presented at 1999 American Control Conference-ACC, SD, CA, USA, 2-4 Jun. 1999. https://doi. org/10.1109/ACC.1999.783590
dc.relation[9] K. Amuthambigaiyin Sundari & P. Maruthupandi, “Optimal Design of PID Controller for the analysis of Two TANK System Using Metaheuristic Optimization Algorithm,” J. Electr. Eng. Technol., vol. 17, no. 1, pp. 627–640, Sep. 2021. https://doi.org/10.1007/s42835-021-00891-6
dc.relation[10] E. Jove, H. Alaiz-Moretón, I. García-Rodríguez, C. Benavides-Cuellar, J. Casteleiro-Roca, & J. Calvo-Rolle, “PID-ITS: an intelligent tutoring system for PID tuning learning process,” presented at International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, LEO, ES, 6-8 Sept. 2017. https://doi.org/10.1007/978-3- 319-67180-2_71
dc.relation[11] Z. Bingul, “A new PID tuning technique using differential evolution for unstable and integrating processes with time delay,” presented at International Conference on Neural Information Processing-ICONIP, CCU, IN, 22-25 Nov. 2004. https://doi.org/10.1007/978-3-540-30499-9_38
dc.relation[12] M. Gani, M. Islam & M. Ullah, “Optimal PID tuning for controlling the temperature of electric furnace by genetic algorithm,” SN Appl. Sci., vol. 1, no. 8, pp. 1–8, Jul. 2019. https://doi.org/10.1007/s42452-019-0929-y
dc.relation[13] M. Mavrinac, Z. iCar, M. Šercer & I. Lorencin, “Genetic Algorithm-Based Parametrization of a PI Controller for DC Motor Control,” Tehn. Glas., vol. 16, no. 1, pp. 16–22, Feb. 2022. https://doi.org/10.31803// tg-20201119185015
dc.relation[14] S. Kodali, R. Mandava & B. Rao, “Development of an Optimal PID Controller for the 4-DOF Manipulator Using Genetic Algorithm,” in R. Agrawal, J. K. Jain, V. S. Yadav, V. K. Manupati, L. Varela (eds), Recent Advances in Industrial Production. Lecture Notes in Mechanical Engineering, GBG, SE: Springer, 2021, pp. 23–32. https://doi.org/10.1007/978-981-16-5281-3_3
dc.relation[15] D. Shan, C. Li, X. Qiu & W. Wei, “PID Parameters Tuning Based on Self-Adaptive Hybrid Particle Swarm Optimization Algorithm,” in Z. Zhong (eds), Proceedings of the International Conference on Information Engineering and Applications (IEA) 2012. Lecture Notes in Electrical Engineering, CQ, CN: Springer, 2013, pp. 751–757. https://doi.org/10.1007/978-1-4471-4847-0_92
dc.relation[16] S. Singh & N. Katal, “Optimal tuning of PID controller for coupled tank liquid level control system using particle swarm optimization,” presented at Sixth International Conference on Soft Computing for Problem Solving-SocProS 2016, PTL, IN, 23-24 Dec. 2016. https://doi.org/10.1007/978-981-10-3325-4_8
dc.relation[17] C. Sravan Bharadwaj, T. Sudhakar Babu & N. Rajasekar, “Tuning PID controller for inverted pendulum using genetic algorithm,” in, A. Konkani, R. Bera & S. Paul (eds), Advances in Systems, Control and Automation, SG: Springer, 2018, p. 395–404. https://doi.org/10.1007/978-981-10-4762-6_38
dc.relation[18] N. Thomas & D. P. Poongodi, “Position control of DC motor using genetic algorithm based PID controller,” presented at World Congress on Engineering, WCE 2019, LDN, UK, 3-5 Jul. 2019. http://www.iaeng.org/ publication/WCE2019/
dc.relation[19] J. C. Tudon-Martínez, J. d.-J. Lozoya-Santos, A. Cantu-Perez & A. Cardenas-Romero, “Advanced Temperature Control Applied on An Industrial Box Furnace,” J. Therm. Sci. Eng. Appl., vol. 14, no. 6, pp. 061001- 1–061001-14, Jun. 2022. https://doi.org/10.1115/1.4052020
dc.relation26
dc.relation13
dc.relation2
dc.relation18
dc.rightsDerechos de autor 2022 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/4152
dc.subjectAlgoritmos genéticos
dc.subjectSintonización automática
dc.subjectOptimización
dc.subjectControlador PID
dc.subjectGenetic algorithms
dc.subjectAutomatic tuning
dc.subjectOptimization
dc.subjectPID controller
dc.titleOn-line method for optimal tuning of PID controllers using standard OPC interface
dc.titleMétodo on-line para sintonización óptima de controladores PID utilizando interface estándar OPC
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución