dc.creatorNguyen, Kim
dc.creatorKubota, Miles
dc.creatorDel Arco, Jon
dc.creatorFeng, Chao
dc.creatorSingha, Monika
dc.creatorBeasley, Samantha
dc.creatorSakr, Jasmine
dc.creatorP. Gandhi, Sunil
dc.creatorBlurton-Jones, Mathew
dc.creatorFernández Lucas, Jesus
dc.creatorC. Spitale, Robert
dc.date2021-02-19T16:50:53Z
dc.date2021-02-19T16:50:53Z
dc.date2020-11-21
dc.date2021-11-21
dc.date.accessioned2023-10-03T19:04:20Z
dc.date.available2023-10-03T19:04:20Z
dc.identifierhttps://hdl.handle.net/11323/7879
dc.identifierhttps://doi.org/10.1021/acschembio.0c00755
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167389
dc.descriptionProfiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationhttps://pubs.acs.org/toc/acbcct/15/12
dc.relationLandgraf, P., Antileo, E. R., Schuman, E. M., and Dieterich, D. C. (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199– 215, DOI: 10.1007/978-1-4939-2272-7_14
dc.relationKrogager, T. P., Ernst, R. J., Elliott, T. S., Calo, L., Beranek, V., Ciabatti, E., Spillantini, M. G., Tripodi, M., Hastings, M. H., and Chin, J. W. (2018) Labeling and identifying cell-specific proteomes in the mouse brain. Nat. Biotechnol. 36 (2), 156– 159, DOI: 10.1038/nbt.4056
dc.relationErnst, R. J., Krogager, T. P., Maywood, E. S., Zanchi, R., Beranek, V., Elliott, T. S., Barry, N. P., Hastings, M. H., and Chin, J. W. (2016) Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12 (10), 776– 778, DOI: 10.1038/nchembio.2160
dc.relationBarrett, R. M., Liu, H. W., Jin, H., Goodman, R. H., and Cohen, M. S. (2016) Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chem. Biol. 11 (6), 1532– 6, DOI: 10.1021/acschembio.5b01076
dc.relationLi, Z., Zhu, Y., Sun, Y., Qin, K., Liu, W., Zhou, W., and Chen, X. (2016) Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chem. Biol. 11 (12), 3273– 3277, DOI: 10.1021/acschembio.6b00765
dc.relationTriemer, T., Messikommer, A., Glasauer, S. M. K., Alzeer, J., Paulisch, M. H., and Luedtke, N. W. (2018) Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl. Acad. Sci. U. S. A. 115 (7), E1366– E1373, DOI: 10.1073/pnas.1714790115
dc.relationNeef, A. B., Pernot, L., Schreier, V. N., Scapozza, L., and Luedtke, N. W. (2015) A Bioorthogonal Chemical Reporter of Viral Infection. Angew. Chem. 127 (27), 8022– 8025, DOI: 10.1002/ange.201500250
dc.relationHubbard, S. C., Boyce, M., McVaugh, C. T., Peehl, D. M., and Bertozzi, C. R. (2011) Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg. Med. Chem. Lett. 21 (17), 4945– 50, DOI: 10.1016/j.bmcl.2011.05.045
dc.relationRabuka, D., Forstner, M. B., Groves, J. T., and Bertozzi, C. R. (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130 (18), 5947– 53, DOI: 10.1021/ja710644g
dc.relationChang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129 (27), 8400– 1, DOI: 10.1021/ja070238o
dc.relationJao, C. Y. and Salic, A. (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U. S. A. 105 (41), 15779– 84, DOI: 10.1073/pnas.0808480105
dc.relationZheng, Y. and Beal, P. A. (2016) Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorg. Med. Chem. Lett. 26 (7), 1799– 802, DOI: 10.1016/j.bmcl.2016.02.038
dc.relationNainar, S., Beasley, S., Fazio, M., Kubota, M., Dai, N., Correa, I. R., Jr., and Spitale, R. C. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. ChemBioChem 17 (22), 2149– 2152, DOI: 10.1002/cbic.201600300
dc.relationHida, N., Aboukilila, M. Y., Burow, D. A., Paul, R., Greenberg, M. M., Fazio, M., Beasley, S., Spitale, R. C., and Cleary, M. D. (2017) EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res. 45 (15), e138 DOI: 10.1093/nar/gkx551
dc.relationAbud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C., Caraway, C. A., Fote, G. M., Madany, A. M., Agrawal, A., Kayed, R., Gylys, K. H., Cahalan, M. D., Cummings, B. J., Antel, J. P., Mortazavi, A., Carson, M. J., Poon, W. W., and Blurton-Jones, M. (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 94 (2), 278– 293, DOI: 10.1016/j.neuron.2017.03.042
dc.relationIslam, K. (2018) The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem. Biol. 25 (10), 1171– 1184, DOI: 10.1016/j.chembiol.2018.07.001
dc.relationYu, H., Li, J., Wu, D., Qiu, Z., and Zhang, Y. (2010) Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39 (2), 464– 73, DOI: 10.1039/B901255A
dc.relationNainar, S., Cuthbert, B. J., Lim, N. M., England, W. E., Ke, K., Sophal, K., Quechol, R., Mobley, D. L., Goulding, C. W., and Spitale, R. C. (2020) An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat. Methods 17 (3), 311– 318, DOI: 10.1038/s41592-019-0726-y
dc.relationWang, D., Zhang, Y., and Kleiner, R. E. (2020) Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2’-Azidocytidine. J. Am. Chem. Soc. 142 (34), 14417– 14421, DOI: 10.1021/jacs.0c04566
dc.relationZhang, Y. and Kleiner, R. E. (2019) A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J. Am. Chem. Soc. 141 (8), 3347– 3351, DOI: 10.1021/jacs.8b11449
dc.relationXie, R., Dong, L., Du, Y., Zhu, Y., Hua, R., Zhang, C., and Chen, X. (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 113 (19), 5173– 8, DOI: 10.1073/pnas.1516524113
dc.relationVinogradov, S. V. (2007) Polymeric nanogel formulations of nucleoside analogs. Expert Opin. Drug Delivery 4 (1), 5– 17, DOI: 10.1517/17425247.4.1.5
dc.relationBalimane, P. V. and Sinko, P. J. (1999) Involvement of multiple transporters in the oral absorption of nucleoside analogues. Adv. Drug Delivery Rev. 39 (1–3), 183– 209, DOI: 10.1016/S0169-409X(99)00026-5
dc.relationTomorsky, J., DeBlander, L., Kentros, C. G., Doe, C. Q., and Niell, C. M. (2017) TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. eNeuro 4 (5), ENEURO.0181-17.2017, DOI: 10.1523/ENEURO.0181-17.2017
dc.relationGay, L., Miller, M. R., Ventura, P. B., Devasthali, V., Vue, Z., Thompson, H. L., Temple, S., Zong, H., Cleary, M. D., Stankunas, K., and Doe, C. Q. (2013) Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27 (1), 98– 115, DOI: 10.1101/gad.205278.112
dc.relationBasnet, H., Tian, L., Ganesh, K., Huang, Y. H., Macalinao, D. G., Brogi, E., Finley, L. W., and Massague, J. (2019) Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 DOI: 10.7554/eLife.43627
dc.relationNguyen, K., Fazio, M., Kubota, M., Nainar, S., Feng, C., Li, X., Atwood, S. X., Bredy, T. W., and Spitale, R. C. (2017) Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J. Am. Chem. Soc. 139 (6), 2148– 2151, DOI: 10.1021/jacs.6b11401
dc.relationKubota, M., Nainar, S., Parker, S. M., England, W., Furche, F., and Spitale, R. C. (2019) Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem. Biol. 14 (8), 1698– 1707, DOI: 10.1021/acschembio.9b00079
dc.relationRieder, U. and Luedtke, N. W. (2014) Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 53 (35), 9168– 72, DOI: 10.1002/anie.201403580
dc.relationKnall, A. C. and Slugovc, C. (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42 (12), 5131– 42, DOI: 10.1039/c3cs60049a
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourceACS Chemical Biology
dc.sourcehttps://pubs.acs.org/doi/10.1021/acschembio.0c00755#
dc.subjectPeptides and proteins
dc.subjectGenetics
dc.subjectLabeling
dc.subjectUracil
dc.subjectImaging probes
dc.titleA bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución