dc.creator | georgin, jordana | |
dc.creator | Dison S.P., Franco | |
dc.creator | Netto, Matias | |
dc.creator | Saood Manzar, Mohammad | |
dc.creator | Zubair, Mukarram | |
dc.creator | Meili, Lucas | |
dc.creator | Allasia Piccilli, Daniel Gustavo | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.date | 2023-07-31T14:24:45Z | |
dc.date | 2023-07-31T14:24:45Z | |
dc.date | 2022-09-10 | |
dc.date.accessioned | 2023-10-03T19:04:01Z | |
dc.date.available | 2023-10-03T19:04:01Z | |
dc.identifier | Georgin, J., Franco, D.S.P., Netto, M.S. et al. Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environmental Management 71, 795–808 (2023). https://doi.org/10.1007/s00267-022-01716-6 | |
dc.identifier | 0364-152X | |
dc.identifier | https://hdl.handle.net/11323/10348 | |
dc.identifier | 10.1007/s00267-022-01716-6 | |
dc.identifier | 1432-1009 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC – Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167326 | |
dc.description | In this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g−1 to 50.4 mg g−1 (C0 = 175 mg L−1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = −39.1066 kJ mol−1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances. | |
dc.format | 14 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer New York | |
dc.publisher | United States | |
dc.relation | Environmental Management | |
dc.relation | Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V,
Marcì G, Palmisano L (2005) Removal of drugs in aqueous
systems by photoassisted degradation. J Appl Electrochem
35:765–774. https://doi.org/10.1007/s10800-005-1630-y | |
dc.relation | Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic,
and thermodynamic studies of lead ion and zinc ion adsorption
from aqueous solution onto activated carbon prepared from palm
oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.
1016/j.jclepro.2017.02.047 | |
dc.relation | Afolabi IC, Popoola SI, Bello OS (2020) Modeling pseudo-secondorder kinetics of orange peel-paracetamol adsorption process
using artificial neural network. Chemom Intell Lab Syst
203:104053. https://doi.org/10.1016/j.chemolab.2020.104053 | |
dc.relation | Alagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A
(2020) Magnetic Mg-Fe/LDH intercalated activated carbon
composites for nitrate and phosphate removal from wastewater:
insight into behavior and mechanisms. Nanomaterials 10:1361 | |
dc.relation | Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J (2016) Comparative adsorption performance of ibuprofen and tetracycline
from aqueous solution by carbonaceous materials. Chem Eng J
283:936–947. https://doi.org/10.1016/j.cej.2015.08.023 | |
dc.relation | Baldoni AB, Botin AA, Tardin FD, de Barros Marques JA, de Oliveira
FL, Silva AJR, da Silva ES, Awabdi CP, Filho EP, Neves LG, de
Andrea Pantaleão A, Teodoro LPR, Teodoro PE (2020) Early
selection strategies in schizolobium parahyba var. amazonicum
(huber ex ducke) barneby. Ind Crops Prod 152:112538. https://
doi.org/10.1016/j.indcrop.2020.112538 | |
dc.relation | Bello OS, Moshood MA, Ewetumo BA, Afolabi IC (2020) Ibuprofen
removal using coconut husk activated Biomass. Chem Data
Collect 29:100533. https://doi.org/10.1016/j.cdc.2020.100533 | |
dc.relation | Benyekkou N, Ghezzar MR, Abdelmalek F, Addou A (2020) Elimination of paracetamol from water by a spent coffee grounds
biomaterial. Environ Nanotechnol, Monit Manag 14:100396.
https://doi.org/10.1016/j.enmm.2020.100396 | |
dc.relation | Bernal V, Giraldo L, Moreno-Piraján JC (2021) Understanding the
solid-liquid equilibria between paracetamol and activated carbon:
Thermodynamic approach of the interactions adsorbent-adsorbate
using equilibrium, kinetic and calorimetry data. J Hazard Mater
419:126432. https://doi.org/10.1016/J.JHAZMAT.2021.126432 | |
dc.relation | Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S
(2006) Paracetamol: New vistas of an old drug. CNS Drug Rev
12:250–275. https://doi.org/10.1111/j.1527-3458.2006.00250.x | |
dc.relation | Blaisi NI, Zubair M, Ihsanullah S, Ali TS, Kazeem MS, Manzar W,
Al-Kutti MA, Al Harthi (2018) Date palm ash-MgAl-layered
double hydroxide composite: sustainable adsorbent for effective
removal of methyl orange and eriochrome black-T from aqueous
phase. Environ Sci Pollut Res 25:34319–34331. https://doi.org/
10.1007/s11356-018-3367-2 | |
dc.relation | Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE (2017)
Adsorption processes for water treatment and purification.
Adsorpt Process Water Treat Purif 1–256. https://doi.org/10.
1007/978-3-319-58136-1 | |
dc.relation | Chakraborty JN (2014) 30 – Differential coloured effect in dyeing, in:
Fundam. Pract. Colouration Text 391–417. https://doi.org/10.
1016/B978-93-80308-46-3.50030-3 | |
dc.relation | Crini G, Badot P-MM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by
adsorption processes using batch studies: A review of recent
literature. Prog Polym Sci 33:399–447. https://doi.org/10.1016/j.
progpolymsci.2007.11.001 | |
dc.relation | Cruz GJF, Pirilä M, Matějová L, Ainassaari K, Solis JL, Fajgar R,
Šolcová O, Keiski RL (2018) Two unconventional precursors to
produce ZnCl2-Based activated carbon for water treatment
applications. Chem Eng Technol 41:1649–1659. https://doi.org/
10.1002/ceat.201800150 | |
dc.relation | P.D. da, C. Kemerich, W.F. de Borba, N. Schmachtenberg, C. Graepin, C.E.B. Flores, G. Barros, Chemical changes in soil occupied
for cemetery horizontal in Rio Grande do Sul - North, (2014) | |
dc.relation | Dai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption,
regeneration and engineering applications of biochar for removal
organic pollutants: A review. Chemosphere 223:12–27. https://
doi.org/10.1016/j.chemosphere.2019.01.161 | |
dc.relation | Danish M, Ahmad T, Hashim R, Said N, Akhtar MN, Mohamad-Saleh
J, Sulaiman O (2018) Comparison of surface properties of wood
biomass activated carbons and their application against rhodamine B and methylene blue dye, Elsevier B.V. https://doi.org/10.
1016/j.surfin.2018.02.001 | |
dc.relation | de H, Gomes O, de Tarso P, Freire C, do Nascimento RF, Pereira Teixeira
RN (2022) Removal of contaminants from water using Moringa
oleifera Lam. as biosorbent: An overview of the last decade. J Water
Process Eng 46:102576. https://doi.org/10.1016/j.jwpe.2022.102576 | |
dc.relation | de P, Amaral A, Antunes AR, Barlow JW (2019) Isolation of erythrinan alkaloids from the leaves and flowers of Erythrina speciosa. Rev Bras Farmacogn 29:488–490. https://doi.org/10.1016/
j.bjp.2019.01.007 | |
dc.relation | de YLDO, Salomón O, Georgin J, Franco DSP, Netto MS, Piccilli
DGA, Foletto EL, Oliveira LFS, Dotto GL (2021) Highperformance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm
fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng
9:104911. https://doi.org/10.1016/j.jece.2020.104911 | |
dc.relation | Dougherty DA (2013) The cation-π interaction. Acc Chem Res
46:885–893. https://doi.org/10.1021/ar300265y | |
dc.relation | Dubinin MM, Astakhov VA, Bering BP, Gordeeva VA, Dubinin MM,
Efimova LI, Serpinskii VV (1971) Development of concepts of
the volume filling of micropores in the adsorption of gases and
vapors by microporous adsorbents - Communication 4. Differential heats and entropies of adsorption. Bull Acad Sci USSR Div
Chem Sci 20:17–22. https://doi.org/10.1007/BF00849310 | |
dc.relation | Fahmy NM, Al-Sayed E, El-Shazly M, Singab AN (2018) Comprehensive review on flavonoids biological activities of Erythrina
plant species. Ind Crops Prod 123:500–538. https://doi.org/10.
1016/j.indcrop.2018.06.028 | |
dc.relation | Ferreira RC, de Lima HHC, Cândido AA, Junior OMC, Arroyo PA,
Gauze GF, Carvalho KQ, Barros MASD(2015) Adsorption of
paracetamol using activated carbon of dende and babassu coconut
mesocarp Int J Biol Biomol Agric Food Biotechnol Eng
9:575–580. waset.org/Publication/10001579 | |
dc.relation | Fessard V, Le Hégarat L (2010) A strategy to study genotoxicity:
Application to aquatic toxins, limits and solutions. Anal Bioanal
Chem 397:1715–1722. https://doi.org/10.1007/s00216-010-3699-3 | |
dc.relation | Fontana KB, Chaves ES, Sanchez JDSS, Watanabe ERLRLR, Pietrobelli JMTATA, Lenzi GG (2016) Textile dye removal from
aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336.
https://doi.org/10.1016/j.ecoenv.2015.11.012 | |
dc.relation | Franco DSP, Georgin J, Netto MS, Allasia D, Oliveira MLS, Foletto
EL, Dotto GL (2021) Highly effective adsorption of synthetic
phenol effluent by a novel activated carbon prepared from fruit
wastes of the Ceiba speciosa forest species. J Environ Chem Eng
9:105927. https://doi.org/10.1016/j.jece.2021.105927 | |
dc.relation | Franco DSP, Vieillard J, Salau NPG, Dotto GL (2020) Interpretations
on the mechanism of In(III) adsorption onto chitosan and chitin: A mass transfer model approach. J Mol Liq 304:112758. https://
doi.org/10.1016/j.molliq.2020.112758 | |
dc.relation | Freundlich H (1907) Über die Adsorption in Lösungen, Zeitschrift Für
Phys. Chemie. 57U. https://doi.org/10.1515/zpch-1907-5723 | |
dc.relation | Georgin J, Boit Martinello Kda, Franco DSP, Netto MS, Piccilli DGA,
Yilmaz M, Silva LFO, Dotto GL (2022) Residual peel of pitaya
fruit (Hylocereus undatus) as a precursor to obtaining an efficient
carbon-based adsorbent for the removal of metanil yellow dye
from water. J Environ Chem Eng 10. https://doi.org/10.1016/j.
jece.2021.107006 | |
dc.relation | Georgin J, de YL, Salomón O, Franco DSP, Netto MS, Piccilli DGA,
Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase
ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.
1016/j.jece.2021.105676 | |
dc.relation | Georgin J, Dotto GL, Mazutti MA, Foletto EL (2016) Preparation of
activated carbon from peanut shell by conventional pyrolysis and
microwave irradiation-pyrolysis to remove organic dyes from
aqueous solutions. J Environ Chem Eng 4:266–275. https://doi.
org/10.1016/j.jece.2015.11.018 | |
dc.relation | Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ
for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.
1039/TF9555101540 | |
dc.relation | Goscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S (2021)
Overcoming the paracetamol dose challenge with wrinkled
mesoporous carbon spheres. J Colloid Interface Sci 586:673–682.
https://doi.org/10.1016/J.JCIS.2020.10.137 | |
dc.relation | Guo W, Fu Y, Jia R, Guo Z, Su C, Li J, Zhao X, Jin Y, Li P, Fan J,
Zhang C, Qu P, Cui H, Gao S, Cheng H, Li J, Li X, Lu B, Xu X,
Wang Z (2022) Visualization of the infection risk assessment of
SARS-CoV-2 through aerosol and surface transmission in a
negative-pressure ward. Environ Int 162:107153. https://doi.org/
10.1016/J.ENVINT.2022.107153 | |
dc.relation | Han Q, Wang J, Goodman BA, Xie J, Liu Z (2020) High adsorption of
methylene blue by activated carbon prepared from phosphoric
acid treated eucalyptus residue. Powder Technol 366:239–248.
https://doi.org/10.1016/j.powtec.2020.02.013 | |
dc.relation | Hollender J, Singer H, McArdell CS (2008) Polar Organic Micropollutants. In: Hlavinek P, Bonacci O, Marsalek J, Mahrikova I
(Eds.) The Water Cycle BT - Dangerous Pollutants (Xenobiotics)
in Urban Water Cycle. Springer, Netherlands, Dordrecht, p
103–116. in: | |
dc.relation | Husin NA, Muhamad M, Yahaya N, Miskam M, Syazni Nik
Mohamed Kamal NN, Asman S, Raoov M, Mohamad Zain NN
(2021) Application of a new choline-imidazole based deep
eutectic solvents in hybrid magnetic molecularly imprinted
polymer for efficient and selective removal of naproxen from
aqueous samples. Mater Chem Phys 261:124228. https://doi.org/
10.1016/j.matchemphys.2021.124228 | |
dc.relation | Jari Y, Roche N, Necibi MC, El Hajjaji S, Dhiba D, Chehbouni A
(2022) Emerging pollutants in moroccan wastewater: occurrence,
impact, and removal technologies. J Chem 2022:9727857. https://
doi.org/10.1155/2022/9727857 | |
dc.relation | Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti
Azis RS (2021) Recent advances in the rejection of endocrinedisrupting compounds from water using membrane and membrane bioreactor technologies: a review. Polymers (Basel) 13.
https://doi.org/10.3390/polym13030392 | |
dc.relation | Kerkhoff CM, da Boit Martinello K, Franco DSP, Netto MS, Georgin
J, Foletto EL, Piccilli DGA, Silva LFO, Dotto GL (2021)
Adsorption of ketoprofen and paracetamol and treatment of a
synthetic mixture by novel porous carbon derived from Butia
capitata endocarp. J Mol Liq 339:117184. https://doi.org/10.
1016/j.molliq.2021.117184 | |
dc.relation | Khan AH, Khan NA, Zubair M, Azfar Shaida M, Manzar MS, Abutaleb A, Naushad M, Iqbal J (2022) Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and
wastewater: A critical review. Environ Res 204:112243. https://
doi.org/10.1016/j.envres.2021.112243 | |
dc.relation | Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic
environment: A challenge to green chemisty. Chem Rev
107:2319–2364. https://doi.org/10.1021/cr020441w | |
dc.relation | Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual
pharmaceuticals from aqueous systems by advanced oxidation
processes. Environ Int 35:402–417. https://doi.org/10.1016/j.
envint.2008.07.009 | |
dc.relation | Kong X, Gao H, Song X, Deng Y, Zhang Y (2020) Adsorption of
phenol on porous carbon from Toona sinensis leaves and its
mechanism. Chem Phys Lett 739:137046. https://doi.org/10.
1016/j.cplett.2019.137046 | |
dc.relation | Konozy EHE, Bernardes ES, Rosa C, Faca V, Greene LJ, Ward RJ
(2003) Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina
speciosa. Arch Biochem Biophys 410:222–229. https://doi.org/
10.1016/S0003-9861(02)00695-1 | |
dc.relation | Langmuir I (1918) The adsorption of gases on plane surfaces of glass,
mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.
org/10.1021/ja02242a004 | |
dc.relation | Lazarotto JS, Boit Martinello Kda, Georgin J, Franco DSP, Netto MS,
Piccilli DGA, Silva LFO, Lima EC, Dotto GL (2021) Preparation
of activated carbon from the residues of the mushroom (Agaricus
bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide. J Environ Chem Eng 9. https://doi.org/
10.1016/j.jece.2021.106843 | |
dc.relation | Li Y, Wang Y, He L, Meng L, Lu H, Li X (2020) Preparation of
poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the
removal of naproxen from aqueous solution. J Hazard Mater
383:121144. https://doi.org/10.1016/j.jhazmat.2019.121144 | |
dc.relation | Liakos EV, Rekos K, Giannakoudakis DA, Mitropoulos AC, Fu J,
Kyzas GZ (2021) Activated porous carbon derived from tea and
plane tree leaves biomass for the removal of pharmaceutical
compounds from wastewaters. Antibiotics 10. https://doi.org/10.
3390/antibiotics10010065 | |
dc.relation | Lima DR, Hosseini-Bandegharaei A, Thue PS, Lima EC, de Albuquerque YRT, dos Reis GS, Umpierres CS, Dias SLP, Tran HN
(2019) Efficient acetaminophen removal from water and hospital
effluents treatment by activated carbons derived from Brazil
nutshells. Colloids Surf A Physicochem Eng Asp 583:123966.
https://doi.org/10.1016/j.colsurfa.2019.123966 | |
dc.relation | López-Cázares MI, Isaacs-Páez ED, Ascacio-Valdés J, Aguilar-González CN, Rangel-Mendez JR, Chazaro-Ruiz LF (2021) Electroassisted naproxen adsorption followed by its electrodegradation
and simultaneous electroreactivation of the activated carbon
electrode. Sep Purif Technol 258. https://doi.org/10.1016/j.
seppur.2020.118030 | |
dc.relation | Madden JC, Enoch SJ, Hewitt M, Cronin MTD (2009) Pharmaceuticals in the environment: Good practice in predicting acute
ecotoxicological effects. Toxicol Lett 185:85–101. https://doi.
org/10.1016/j.toxlet.2008.12.005 | |
dc.relation | Manzar MS, Zubair M, Khan NA, Husain Khan A, Baig U, Aziz MA,
Blaisi NI, Abdel-Magid HIM (2020) Adsorption behaviour of green
coffee residues for decolourization of hazardous congo red and
eriochrome black T dyes from aqueous solutions. Int J Environ Anal
Chem. https://doi.org/10.1080/03067319.2020.1811260 | |
dc.relation | Martín J, Buchberger W, Santos JL, Alonso E, Aparicio I (2012) Highperformance liquid chromatography quadrupole time-of-flight
mass spectrometry method for the analysis of antidiabetic drugs
in aqueous environmental samples. J Chromatogr B Anal Technol
Biomed Life Sci 895–896:94–101. https://doi.org/10.1016/j.
jchromb.2012.03.023 | |
dc.relation | Mashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen
from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://
doi.org/10.1080/19443994.2015.1051588 | |
dc.relation | Medina CL, Sanches MC, Tucci MLS, Sousa CAF, Cuzzuol GRF,
Joly CA (2009) Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: Morphophysiological and
growth responses. Ann Bot 104:671–680. https://doi.org/10.
1093/aob/mcp159 | |
dc.relation | Mestre AS, Tyszko E, Andrade MA, Galhetas M, Freire C, Carvalho
AP (2015) Sustainable activated carbons prepared from a sucrosederived hydrochar: remarkable adsorbents for pharmaceutical
compounds. RSC Adv 5:19696–19707. https://doi.org/10.1039/
C4RA14495C | |
dc.relation | Nandan A, Siddiqui NA, Singh C, Aeri A, Gwenzi W, Ighalo JO, de
Carvalho Nagliate P, Meili L, Singh P, Chaukura N, Rangabhashiyam S(2021) COVID-19 pandemic in Uttarakhand, India:
Environmental recovery or degradation J Environ Chem Eng
9:106595. https://doi.org/10.1016/J.JECE.2021.106595 | |
dc.relation | Neuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic
pharmaceuticals in the green algae Scenedesmus vacuolatus can
be explained with a toxicokinetic ion-trapping model. Aquat
Toxicol 101:266–275. https://doi.org/10.1016/j.aquatox.2010.10.
008 | |
dc.relation | Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M,
Mohammadi-moghadam F, Nourmoradi H, Goudarzi B, Dindarloo K (2018) Preparation, characterization and Cr(VI) adsorption
evaluation of NaOH-activated carbon produced from Date Press
Cake; an agro-industrial waste. Bioresour Technol 258:48–56.
https://doi.org/10.1016/j.biortech.2018.02.106 | |
dc.relation | Ocampo-Perez R, Padilla-Ortega E, Medellin-Castillo NA, CoronadoOyarvide P, Aguilar-Madera CG, Segovia-Sandoval SJ, FloresRamírez R, Parra-Marfil A (2019) Synthesis of biochar from chili
seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci Total Environ 655:1397–1408.
https://doi.org/10.1016/j.scitotenv.2018.11.283 | |
dc.relation | Ogunmodede J, Akanji SB, Bello OS (2021) Moringa oleifera seed
pod-based adsorbent for the removal of paracetamol from aqueous solution: A novel approach toward diversification. Environ
Prog\Sustain Energy 40:e13615. https://doi.org/10.1002/ep.
13615 | |
dc.relation | Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing
process of cellulose whiskers/polylactic acid nanocomposites.
Compos Sci Technol 66:2776–2784. https://doi.org/10.1016/j.
compscitech.2006.03.002 | |
dc.relation | Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption
of dyes on activated carbons: Influence of surface chemical
groups. Carbon N. Y 41:811–821. https://doi.org/10.1016/S0008-
6223(02)00406-2 | |
dc.relation | Phasuphan W, Praphairaksit N, Imyim A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified
waste tire crumb rubber. J Mol Liq 294:111554. https://doi.org/
10.1016/j.molliq.2019.111554 | |
dc.relation | Pi N, Ng JZ, Kelly BC (2017) Bioaccumulation of pharmaceutically
active compounds and endocrine disrupting chemicals in aquatic
macrophytes: Results of hydroponic experiments with Echinodorus
horemanii and Eichhornia crassipes. Sci Total Environ
601–602:812–820. https://doi.org/10.1016/j.scitotenv.2017.05.137 | |
dc.relation | Puchana-Rosero MJ, Adebayo MA, Lima EC, Machado FM, Thue PS,
Vaghetti JCP, Umpierres CS, Gutterres M (2016) Microwaveassisted activated carbon obtained from the sludge of tannerytreatment effluent plant for removal of leather dyes. Colloids Surf
A Physicochem Eng Asp 504:105–115. https://doi.org/10.1016/j.
colsurfa.2016.05.059 | |
dc.relation | D.U. Quintela, D.C. Henrique, P.V. dos, S. Lins, A.H. Ide, A. Erto,
J.L. da S. Duarte, L. Meili, Waste of Mytella Falcata shells for
removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies, Colloids Surfaces B Biointerfaces. 195 (2020). https://doi.org/10.1016/j.
colsurfb.2020.111230 | |
dc.relation | Rahman A, Hango HJ, Daniel LS, Uahengo V, Jaime SJ, Bhaskaruni
SVHS, Jonnalagadda SB (2019) Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as
impregnating agent for water treatment: An environmentally
benevolent approach. J Clean Prod 237:117689. https://doi.org/
10.1016/j.jclepro.2019.117689 | |
dc.relation | Rakić V, Rac V, Krmar M, Otman O, Auroux A (2015) The adsorption
of pharmaceutically active compounds from aqueous solutions
onto activated carbons. J Hazard Mater 282:141–149. https://doi.
org/10.1016/j.jhazmat.2014.04.062 | |
dc.relation | Ruthven DM (1984) Principles of adsorption and adsorption processes, 7th ed. John Wiley & Sons, Berlim, https://doi.org/10.
1016/0167-6989(85)90037-6 | |
dc.relation | Salomón YL, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto
EL, Pinto D, Oliveira MLS, Dotto GL (2022) Adsorption of
atrazine herbicide from water by diospyros kaki fruit waste
activated carbon. J Mol Liq 347:117990. https://doi.org/10.1016/
j.molliq.2021.117990 | |
dc.relation | Saood Manzar M, Ahmad T, Ullah N, Velayudhaperumal Chellam P,
John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E
(2022) Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process
modeling. Sep Purif Technol 287:120559. https://doi.org/10.
1016/j.seppur.2022.120559 | |
dc.relation | Siedlecka EM, Ofiarska A, Borzyszkowska AF, Białk-Bielińska A,
Stepnowski P, Pieczyńska A (2018) Cytostatic drug removal
using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity. Water Res 144:235–245. https://doi.
org/10.1016/j.watres.2018.07.035 | |
dc.relation | 808 | |
dc.relation | 795 | |
dc.relation | 71 | |
dc.rights | © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://link.springer.com/article/10.1007/s00267-022-01716-6 | |
dc.subject | Residual pod | |
dc.subject | Drug removal | |
dc.subject | Adsorption of pollutants | |
dc.subject | Emergent pollutants | |
dc.title | Adsorption of the first-line covid treatment analgesic onto activated carbon from residual pods of erythrina speciosa | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |