dc.creatorgeorgin, jordana
dc.creatorDison S.P., Franco
dc.creatorNetto, Matias
dc.creatorSaood Manzar, Mohammad
dc.creatorZubair, Mukarram
dc.creatorMeili, Lucas
dc.creatorAllasia Piccilli, Daniel Gustavo
dc.creatorSilva Oliveira, Luis Felipe
dc.date2023-07-31T14:24:45Z
dc.date2023-07-31T14:24:45Z
dc.date2022-09-10
dc.date.accessioned2023-10-03T19:04:01Z
dc.date.available2023-10-03T19:04:01Z
dc.identifierGeorgin, J., Franco, D.S.P., Netto, M.S. et al. Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environmental Management 71, 795–808 (2023). https://doi.org/10.1007/s00267-022-01716-6
dc.identifier0364-152X
dc.identifierhttps://hdl.handle.net/11323/10348
dc.identifier10.1007/s00267-022-01716-6
dc.identifier1432-1009
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC – Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167326
dc.descriptionIn this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g−1 to 50.4 mg g−1 (C0 = 175 mg L−1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = −39.1066 kJ mol−1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer New York
dc.publisherUnited States
dc.relationEnvironmental Management
dc.relationAddamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G, Palmisano L (2005) Removal of drugs in aqueous systems by photoassisted degradation. J Appl Electrochem 35:765–774. https://doi.org/10.1007/s10800-005-1630-y
dc.relationAdebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10. 1016/j.jclepro.2017.02.047
dc.relationAfolabi IC, Popoola SI, Bello OS (2020) Modeling pseudo-secondorder kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemom Intell Lab Syst 203:104053. https://doi.org/10.1016/j.chemolab.2020.104053
dc.relationAlagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A (2020) Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: insight into behavior and mechanisms. Nanomaterials 10:1361
dc.relationÁlvarez-Torrellas S, Rodríguez A, Ovejero G, García J (2016) Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 283:936–947. https://doi.org/10.1016/j.cej.2015.08.023
dc.relationBaldoni AB, Botin AA, Tardin FD, de Barros Marques JA, de Oliveira FL, Silva AJR, da Silva ES, Awabdi CP, Filho EP, Neves LG, de Andrea Pantaleão A, Teodoro LPR, Teodoro PE (2020) Early selection strategies in schizolobium parahyba var. amazonicum (huber ex ducke) barneby. Ind Crops Prod 152:112538. https:// doi.org/10.1016/j.indcrop.2020.112538
dc.relationBello OS, Moshood MA, Ewetumo BA, Afolabi IC (2020) Ibuprofen removal using coconut husk activated Biomass. Chem Data Collect 29:100533. https://doi.org/10.1016/j.cdc.2020.100533
dc.relationBenyekkou N, Ghezzar MR, Abdelmalek F, Addou A (2020) Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ Nanotechnol, Monit Manag 14:100396. https://doi.org/10.1016/j.enmm.2020.100396
dc.relationBernal V, Giraldo L, Moreno-Piraján JC (2021) Understanding the solid-liquid equilibria between paracetamol and activated carbon: Thermodynamic approach of the interactions adsorbent-adsorbate using equilibrium, kinetic and calorimetry data. J Hazard Mater 419:126432. https://doi.org/10.1016/J.JHAZMAT.2021.126432
dc.relationBertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: New vistas of an old drug. CNS Drug Rev 12:250–275. https://doi.org/10.1111/j.1527-3458.2006.00250.x
dc.relationBlaisi NI, Zubair M, Ihsanullah S, Ali TS, Kazeem MS, Manzar W, Al-Kutti MA, Al Harthi (2018) Date palm ash-MgAl-layered double hydroxide composite: sustainable adsorbent for effective removal of methyl orange and eriochrome black-T from aqueous phase. Environ Sci Pollut Res 25:34319–34331. https://doi.org/ 10.1007/s11356-018-3367-2
dc.relationBonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE (2017) Adsorption processes for water treatment and purification. Adsorpt Process Water Treat Purif 1–256. https://doi.org/10. 1007/978-3-319-58136-1
dc.relationChakraborty JN (2014) 30 – Differential coloured effect in dyeing, in: Fundam. Pract. Colouration Text 391–417. https://doi.org/10. 1016/B978-93-80308-46-3.50030-3
dc.relationCrini G, Badot P-MM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci 33:399–447. https://doi.org/10.1016/j. progpolymsci.2007.11.001
dc.relationCruz GJF, Pirilä M, Matějová L, Ainassaari K, Solis JL, Fajgar R, Šolcová O, Keiski RL (2018) Two unconventional precursors to produce ZnCl2-Based activated carbon for water treatment applications. Chem Eng Technol 41:1649–1659. https://doi.org/ 10.1002/ceat.201800150
dc.relationP.D. da, C. Kemerich, W.F. de Borba, N. Schmachtenberg, C. Graepin, C.E.B. Flores, G. Barros, Chemical changes in soil occupied for cemetery horizontal in Rio Grande do Sul - North, (2014)
dc.relationDai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 223:12–27. https:// doi.org/10.1016/j.chemosphere.2019.01.161
dc.relationDanish M, Ahmad T, Hashim R, Said N, Akhtar MN, Mohamad-Saleh J, Sulaiman O (2018) Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Elsevier B.V. https://doi.org/10. 1016/j.surfin.2018.02.001
dc.relationde H, Gomes O, de Tarso P, Freire C, do Nascimento RF, Pereira Teixeira RN (2022) Removal of contaminants from water using Moringa oleifera Lam. as biosorbent: An overview of the last decade. J Water Process Eng 46:102576. https://doi.org/10.1016/j.jwpe.2022.102576
dc.relationde P, Amaral A, Antunes AR, Barlow JW (2019) Isolation of erythrinan alkaloids from the leaves and flowers of Erythrina speciosa. Rev Bras Farmacogn 29:488–490. https://doi.org/10.1016/ j.bjp.2019.01.007
dc.relationde YLDO, Salomón O, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Oliveira LFS, Dotto GL (2021) Highperformance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng 9:104911. https://doi.org/10.1016/j.jece.2020.104911
dc.relationDougherty DA (2013) The cation-π interaction. Acc Chem Res 46:885–893. https://doi.org/10.1021/ar300265y
dc.relationDubinin MM, Astakhov VA, Bering BP, Gordeeva VA, Dubinin MM, Efimova LI, Serpinskii VV (1971) Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - Communication 4. Differential heats and entropies of adsorption. Bull Acad Sci USSR Div Chem Sci 20:17–22. https://doi.org/10.1007/BF00849310
dc.relationFahmy NM, Al-Sayed E, El-Shazly M, Singab AN (2018) Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind Crops Prod 123:500–538. https://doi.org/10. 1016/j.indcrop.2018.06.028
dc.relationFerreira RC, de Lima HHC, Cândido AA, Junior OMC, Arroyo PA, Gauze GF, Carvalho KQ, Barros MASD(2015) Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp Int J Biol Biomol Agric Food Biotechnol Eng 9:575–580. waset.org/Publication/10001579
dc.relationFessard V, Le Hégarat L (2010) A strategy to study genotoxicity: Application to aquatic toxins, limits and solutions. Anal Bioanal Chem 397:1715–1722. https://doi.org/10.1007/s00216-010-3699-3
dc.relationFontana KB, Chaves ES, Sanchez JDSS, Watanabe ERLRLR, Pietrobelli JMTATA, Lenzi GG (2016) Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336. https://doi.org/10.1016/j.ecoenv.2015.11.012
dc.relationFranco DSP, Georgin J, Netto MS, Allasia D, Oliveira MLS, Foletto EL, Dotto GL (2021) Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J Environ Chem Eng 9:105927. https://doi.org/10.1016/j.jece.2021.105927
dc.relationFranco DSP, Vieillard J, Salau NPG, Dotto GL (2020) Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: A mass transfer model approach. J Mol Liq 304:112758. https:// doi.org/10.1016/j.molliq.2020.112758
dc.relationFreundlich H (1907) Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie. 57U. https://doi.org/10.1515/zpch-1907-5723
dc.relationGeorgin J, Boit Martinello Kda, Franco DSP, Netto MS, Piccilli DGA, Yilmaz M, Silva LFO, Dotto GL (2022) Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water. J Environ Chem Eng 10. https://doi.org/10.1016/j. jece.2021.107006
dc.relationGeorgin J, de YL, Salomón O, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10. 1016/j.jece.2021.105676
dc.relationGeorgin J, Dotto GL, Mazutti MA, Foletto EL (2016) Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. J Environ Chem Eng 4:266–275. https://doi. org/10.1016/j.jece.2015.11.018
dc.relationGlueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10. 1039/TF9555101540
dc.relationGoscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S (2021) Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. J Colloid Interface Sci 586:673–682. https://doi.org/10.1016/J.JCIS.2020.10.137
dc.relationGuo W, Fu Y, Jia R, Guo Z, Su C, Li J, Zhao X, Jin Y, Li P, Fan J, Zhang C, Qu P, Cui H, Gao S, Cheng H, Li J, Li X, Lu B, Xu X, Wang Z (2022) Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. Environ Int 162:107153. https://doi.org/ 10.1016/J.ENVINT.2022.107153
dc.relationHan Q, Wang J, Goodman BA, Xie J, Liu Z (2020) High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technol 366:239–248. https://doi.org/10.1016/j.powtec.2020.02.013
dc.relationHollender J, Singer H, McArdell CS (2008) Polar Organic Micropollutants. In: Hlavinek P, Bonacci O, Marsalek J, Mahrikova I (Eds.) The Water Cycle BT - Dangerous Pollutants (Xenobiotics) in Urban Water Cycle. Springer, Netherlands, Dordrecht, p 103–116. in:
dc.relationHusin NA, Muhamad M, Yahaya N, Miskam M, Syazni Nik Mohamed Kamal NN, Asman S, Raoov M, Mohamad Zain NN (2021) Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater Chem Phys 261:124228. https://doi.org/ 10.1016/j.matchemphys.2021.124228
dc.relationJari Y, Roche N, Necibi MC, El Hajjaji S, Dhiba D, Chehbouni A (2022) Emerging pollutants in moroccan wastewater: occurrence, impact, and removal technologies. J Chem 2022:9727857. https:// doi.org/10.1155/2022/9727857
dc.relationKatibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS (2021) Recent advances in the rejection of endocrinedisrupting compounds from water using membrane and membrane bioreactor technologies: a review. Polymers (Basel) 13. https://doi.org/10.3390/polym13030392
dc.relationKerkhoff CM, da Boit Martinello K, Franco DSP, Netto MS, Georgin J, Foletto EL, Piccilli DGA, Silva LFO, Dotto GL (2021) Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J Mol Liq 339:117184. https://doi.org/10. 1016/j.molliq.2021.117184
dc.relationKhan AH, Khan NA, Zubair M, Azfar Shaida M, Manzar MS, Abutaleb A, Naushad M, Iqbal J (2022) Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environ Res 204:112243. https:// doi.org/10.1016/j.envres.2021.112243
dc.relationKhetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: A challenge to green chemisty. Chem Rev 107:2319–2364. https://doi.org/10.1021/cr020441w
dc.relationKlavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. https://doi.org/10.1016/j. envint.2008.07.009
dc.relationKong X, Gao H, Song X, Deng Y, Zhang Y (2020) Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism. Chem Phys Lett 739:137046. https://doi.org/10. 1016/j.cplett.2019.137046
dc.relationKonozy EHE, Bernardes ES, Rosa C, Faca V, Greene LJ, Ward RJ (2003) Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina speciosa. Arch Biochem Biophys 410:222–229. https://doi.org/ 10.1016/S0003-9861(02)00695-1
dc.relationLangmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi. org/10.1021/ja02242a004
dc.relationLazarotto JS, Boit Martinello Kda, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Silva LFO, Lima EC, Dotto GL (2021) Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide. J Environ Chem Eng 9. https://doi.org/ 10.1016/j.jece.2021.106843
dc.relationLi Y, Wang Y, He L, Meng L, Lu H, Li X (2020) Preparation of poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. J Hazard Mater 383:121144. https://doi.org/10.1016/j.jhazmat.2019.121144
dc.relationLiakos EV, Rekos K, Giannakoudakis DA, Mitropoulos AC, Fu J, Kyzas GZ (2021) Activated porous carbon derived from tea and plane tree leaves biomass for the removal of pharmaceutical compounds from wastewaters. Antibiotics 10. https://doi.org/10. 3390/antibiotics10010065
dc.relationLima DR, Hosseini-Bandegharaei A, Thue PS, Lima EC, de Albuquerque YRT, dos Reis GS, Umpierres CS, Dias SLP, Tran HN (2019) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf A Physicochem Eng Asp 583:123966. https://doi.org/10.1016/j.colsurfa.2019.123966
dc.relationLópez-Cázares MI, Isaacs-Páez ED, Ascacio-Valdés J, Aguilar-González CN, Rangel-Mendez JR, Chazaro-Ruiz LF (2021) Electroassisted naproxen adsorption followed by its electrodegradation and simultaneous electroreactivation of the activated carbon electrode. Sep Purif Technol 258. https://doi.org/10.1016/j. seppur.2020.118030
dc.relationMadden JC, Enoch SJ, Hewitt M, Cronin MTD (2009) Pharmaceuticals in the environment: Good practice in predicting acute ecotoxicological effects. Toxicol Lett 185:85–101. https://doi. org/10.1016/j.toxlet.2008.12.005
dc.relationManzar MS, Zubair M, Khan NA, Husain Khan A, Baig U, Aziz MA, Blaisi NI, Abdel-Magid HIM (2020) Adsorption behaviour of green coffee residues for decolourization of hazardous congo red and eriochrome black T dyes from aqueous solutions. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1811260
dc.relationMartín J, Buchberger W, Santos JL, Alonso E, Aparicio I (2012) Highperformance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. J Chromatogr B Anal Technol Biomed Life Sci 895–896:94–101. https://doi.org/10.1016/j. jchromb.2012.03.023
dc.relationMashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https:// doi.org/10.1080/19443994.2015.1051588
dc.relationMedina CL, Sanches MC, Tucci MLS, Sousa CAF, Cuzzuol GRF, Joly CA (2009) Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: Morphophysiological and growth responses. Ann Bot 104:671–680. https://doi.org/10. 1093/aob/mcp159
dc.relationMestre AS, Tyszko E, Andrade MA, Galhetas M, Freire C, Carvalho AP (2015) Sustainable activated carbons prepared from a sucrosederived hydrochar: remarkable adsorbents for pharmaceutical compounds. RSC Adv 5:19696–19707. https://doi.org/10.1039/ C4RA14495C
dc.relationNandan A, Siddiqui NA, Singh C, Aeri A, Gwenzi W, Ighalo JO, de Carvalho Nagliate P, Meili L, Singh P, Chaukura N, Rangabhashiyam S(2021) COVID-19 pandemic in Uttarakhand, India: Environmental recovery or degradation J Environ Chem Eng 9:106595. https://doi.org/10.1016/J.JECE.2021.106595
dc.relationNeuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat Toxicol 101:266–275. https://doi.org/10.1016/j.aquatox.2010.10. 008
dc.relationNorouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-moghadam F, Nourmoradi H, Goudarzi B, Dindarloo K (2018) Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour Technol 258:48–56. https://doi.org/10.1016/j.biortech.2018.02.106
dc.relationOcampo-Perez R, Padilla-Ortega E, Medellin-Castillo NA, CoronadoOyarvide P, Aguilar-Madera CG, Segovia-Sandoval SJ, FloresRamírez R, Parra-Marfil A (2019) Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci Total Environ 655:1397–1408. https://doi.org/10.1016/j.scitotenv.2018.11.283
dc.relationOgunmodede J, Akanji SB, Bello OS (2021) Moringa oleifera seed pod-based adsorbent for the removal of paracetamol from aqueous solution: A novel approach toward diversification. Environ Prog\Sustain Energy 40:e13615. https://doi.org/10.1002/ep. 13615
dc.relationOksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784. https://doi.org/10.1016/j. compscitech.2006.03.002
dc.relationPereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon N. Y 41:811–821. https://doi.org/10.1016/S0008- 6223(02)00406-2
dc.relationPhasuphan W, Praphairaksit N, Imyim A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J Mol Liq 294:111554. https://doi.org/ 10.1016/j.molliq.2019.111554
dc.relationPi N, Ng JZ, Kelly BC (2017) Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci Total Environ 601–602:812–820. https://doi.org/10.1016/j.scitotenv.2017.05.137
dc.relationPuchana-Rosero MJ, Adebayo MA, Lima EC, Machado FM, Thue PS, Vaghetti JCP, Umpierres CS, Gutterres M (2016) Microwaveassisted activated carbon obtained from the sludge of tannerytreatment effluent plant for removal of leather dyes. Colloids Surf A Physicochem Eng Asp 504:105–115. https://doi.org/10.1016/j. colsurfa.2016.05.059
dc.relationD.U. Quintela, D.C. Henrique, P.V. dos, S. Lins, A.H. Ide, A. Erto, J.L. da S. Duarte, L. Meili, Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies, Colloids Surfaces B Biointerfaces. 195 (2020). https://doi.org/10.1016/j. colsurfb.2020.111230
dc.relationRahman A, Hango HJ, Daniel LS, Uahengo V, Jaime SJ, Bhaskaruni SVHS, Jonnalagadda SB (2019) Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: An environmentally benevolent approach. J Clean Prod 237:117689. https://doi.org/ 10.1016/j.jclepro.2019.117689
dc.relationRakić V, Rac V, Krmar M, Otman O, Auroux A (2015) The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J Hazard Mater 282:141–149. https://doi. org/10.1016/j.jhazmat.2014.04.062
dc.relationRuthven DM (1984) Principles of adsorption and adsorption processes, 7th ed. John Wiley & Sons, Berlim, https://doi.org/10. 1016/0167-6989(85)90037-6
dc.relationSalomón YL, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Pinto D, Oliveira MLS, Dotto GL (2022) Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon. J Mol Liq 347:117990. https://doi.org/10.1016/ j.molliq.2021.117990
dc.relationSaood Manzar M, Ahmad T, Ullah N, Velayudhaperumal Chellam P, John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E (2022) Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Sep Purif Technol 287:120559. https://doi.org/10. 1016/j.seppur.2022.120559
dc.relationSiedlecka EM, Ofiarska A, Borzyszkowska AF, Białk-Bielińska A, Stepnowski P, Pieczyńska A (2018) Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity. Water Res 144:235–245. https://doi. org/10.1016/j.watres.2018.07.035
dc.relation808
dc.relation795
dc.relation71
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://link.springer.com/article/10.1007/s00267-022-01716-6
dc.subjectResidual pod
dc.subjectDrug removal
dc.subjectAdsorption of pollutants
dc.subjectEmergent pollutants
dc.titleAdsorption of the first-line covid treatment analgesic onto activated carbon from residual pods of erythrina speciosa
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución