Remoción de cromo y zinc de aguas residuales sintéticas en un humedal construido plantado con Cyperus odoratus L

dc.creatorde Moya Sánchez, Ángel
dc.creatorCASIERRA, HENRY
dc.creatorVARGAS, XIMENA
dc.creatorCaselles-Osorio, Aracelly
dc.date2023-06-01T22:26:04Z
dc.date2023-06-01T22:26:04Z
dc.date2021
dc.date.accessioned2023-10-03T19:03:56Z
dc.date.available2023-10-03T19:03:56Z
dc.identifierA. de Moya-Sánchez, H. Casierra-Martínez, X. Vargas-Ramírez & A. Caselles-Osorio, “Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L.”, INGE CUC, vol. 17, no. 2, pp. 75–86. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.08
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10221
dc.identifier10.17981/ingecuc.17.2.2021.08
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC – Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167306
dc.descriptionIntroducción— Los Humedales Construidos (HC) son una tecnología reconocida para tratar aguas residuales industriales. Objetivo— Remover Cr y Zn del agua residual sintética a través de un sistema piloto de humedales construidos de flujo subsuperficial horizontal. Metodología— El estudio se realizó en la Universidad del Atlántico en Barranquilla (Colombia). Dos contenedores de 0.375 m2 de altura fueron rellenados con grava (~ 10 mm y 40% de porosidad) y una columna de agua de 0.3 m. Uno de los humedales se plantó con Cyperus odoratus L. y otro sin plantas se usó como control. Resultados— La eficiencia de remoción de Cr y Zn en el humedal plantado fue de 93% y 96%, respectivamente y se obtuvo 67% y 98% de remoción en el sistema sin plantar con diferencias estadísticas (P < 0.05). La diferencia observada en la producción de biomasa (0.1 kg/m2 y 0.6 kg m2), estuvo relacionada con el climática estacional que pudo haber favorecido el crecimiento de la planta. C. odoratus alcanzó un Factor de Translocación mayor de 1.5 para Cr y Zn, lo cual fue mayor que el reportado para otras especies de Cyperus. Sin embargo, un factor de bioconcentración >13.6 para Zn y < 7.7 para Cr indicó que C. odoratus es una especie acumuladora de Cr y Zn. Los procesos de sorción de metales en la grava pudieron ocurrir debido a la alta eficiencia de eliminación de Zn en los sistemas no plantados. Conclusiones— C. odoratus podría recomendarse para su uso en tecnología de humedales construidos debido a su capacidad de rápido crecimiento, absorción y translocación de metales pesados.
dc.descriptionIntroduction— Constructed wetlands (CWs) are a recognized technology to treat industrial wastewater. Objective— A pilot system of two horizontal subsurface flow CWs was used to remove Cr and Zn from industrial synthetic wastewater. Methodology— The study was carried out at Universidad del Atlántico in Barranquilla (Colombia). Two containers of 0.375 m2 were filled with a gravel bed (~10 mm and 40% of porosity), and a 0.3 m water column. One container was planted with Cyperus odoratus L. and another without plants was used as a control. Results— The removal efficiency of Cr and Zn was 93% and 96% in the CW planted, respectively, and 67% and 98% removal were obtained in the unplanted system with statistical differences (P 13.6 for Zn and < 7.7 for Cr indicated that C. odoratus is an accumulator species for Cr and Zn. Sorption metal processes in gravel can be occurring due to the high removal efficiency of Zn in unplanted systems Conclusions— These results show that C. odoratus could be recommended for use in constructed wetlands technology due to fast-growing and absorption and translocation heavy metals capacity.
dc.format13 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] República de Colombia, Contraloría General, Informe sobre la calidad y eficiencia del Control Fiscal Interno Vigencia 2017, BO, CO: Contraloría General de la República, 2017. Disponible en https://www.contraloria.gov.co/documents/20181/1560084/Informe+Control+Fiscal+Interno+2018-2019.pdf/192c04e0-bb6e-472d-82c7-3cb4a8f146db?version=1.0
dc.relation[2] IDEAM,. Estudio Nacional del Agua 2018, Bog. D.C., Col.: IDEAM/EMbajada de Suiza en Colombia, Mar. 2019. Available: https://cta.org.co/descargables-biblionet/agua-y-medio-ambiente/Estudio-Nacionaldel-Agua-2018.pdf?
dc.relation[3] República de Colombia, MinAmbiente, “Por el cual se establecen los parámetros y valores límites permisibles en los vertimientos puntuales a cuerpos de agua superficiales y a los sistemas de alcantarillado público y se dictan otras disposicones,” Resolución 0631, DO: No. 49.486, 18 Abr. 2015. Recuperado de http://www.emserchia.gov.co/PDF/Resolucion631.pdf
dc.relation[4] Del Rio y Y. Ramos, “Acondicionamiento del agua residual industrial de los procesos de galvanización y decapado previo al tratamiento en humedales construidos,” Conferencia presentada en el Panamericana en sistemas de Humedales para el manejo, tratamiento y mejora de la calidad del agua, Env Sci Fac, UTP, Pereira, CO, 2012. Disponible en https://www.sanidadambiental.com/2011/12/19/conferencia-panamericana-en-sistemas-de-humedales-para-el-manejo-tratamiento-y-mejoramiento-de-la-calidad-del-agua/
dc.relation[5] N. B. Morales y G. E. Acosta, “Sistema de electrocoagulación como tratamiento de aguas residuales galvánicas,” Cienc Ing Neogranad, vol. 20, no. 1, pp. 33–34, 2010. https://doi.org/10.18359/rcin.282
dc.relation[6] A. Restrepo F & L. M. Tapia Q, “Evaluación de la remoción de conductividad y turbiedad de agua residual de una industria metalmecánica utilizando prototipos por lotes de humedales construidos de flujo libre,” Investigación, UCM, Colombia, 2019.
dc.relation[7] R. H. Kadlec & S. D. Wallace,Treatment Wetlands. 2nd Ed, BR., FL., USA.: CRC Press Taylor & Francis Group, 2009.
dc.relation[8] ONU, “Informe mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos, 2018: Soluciones basadas en la naturaleza para la gestión del aguaWWDR 2018, PA, FR: UNESCO, 2018. Disponible en https://unesdoc.unesco.org/ark:/48223/pf0000261494/PDF/261494spa.pdf.multi
dc.relation[9] X. Zhang, T. Wang, Z. Xu, L. Zhang, Y. Dai, X. Tang, R. Tao, R. Li, Y. Yang & Y. Tai, “Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands ( RSHCWs ) and their removal,” Chem Eng J, vol. 379, pp. 122363–122363, Jan. 2020. https://doi.org/10.1016/j.cej.2019.122363
dc.relation[10] J. Truu, M. Espenberg, H. Nõlvak & J. Juhanson, “Phytoremediation and Plant-Assisted Bioremediation Treatment Wetlands: A Review,” Open Biotechnol J, vol. 9, pp. 85–92, Jun. 2015. Available: https://openbiotechnologyjournal.com/VOLUME/9/
dc.relation[11] H. Singh, A. Verma, M. Kumar, R. Sharma, R. Gupta, M. Kaur, M. Negi & S. K. Sharma, “Phytoremediation : A Green Technology to Clean Up the Sites with Low and Moderate Level of Heavy Metals,” Austin Biochem, vol. 2, no. 2, pp. 1–8, 2017. Available: https://austinpublishinggroup.com/biochemistry/ fulltext/biochemistry-v2-id1012.php
dc.relation[12] D. Zhang, C. Wang, L. Zhang, D, Xu, B. Liu, Q. Zhou & Z. Wu, “Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands,” J Environ Sci, vol. 44, pp. 4–12, Jun. 2016. https://doi.org/10.1016/j.jes.2015.07.020
dc.relation[13] C. J. Mulkeen, C. D. Williams, M. J. Gormally & M. G. Healy, “Seasonal patterns of metals and nutrients in Phragmites australis ( Cav .) Trin . ex Steudel in a constructed wetland in the west of Ireland,” Ecol Eng, vol. 107, pp. 192–197, Oct. 2017. https://doi.org/10.1016/j.ecoleng.2017.07.007
dc.relation[14] J. A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas & M. Á. Balderas-Plata, “Tolerance and hyperaccumulation of a mixture of heavy metals ( Cu, Pb, Hg, and Zn ) by four aquatic macrophytes,” Int J Phytoremediation, vol. 19, no. 3, pp. 239–245, May. 2017. https://doi.org/10.1080/15226514.2016.1207610
dc.relation[15] S. Rezania, S. Mat, M. Fadhil, F. Aini & H. Kamyab, “Comprehensive review on phytotechnology : Heavy metals removal by diverse aquatic plants species from wastewater,” J Haz Mat, vol. 318, pp. 587–599, Nov. 2016. https://doi.org/10.1016/j.jhazmat.2016.07.053
dc.relation[16] S. Yadav & R. Chandra, “Heavy Metals Accumulation and Ecophysiological Effect on Typha angustifolia L . And Cyperus esculentus L . Growing in Distillery and Tannery Effluent polluted natural wetlands site, Unnao, Inidia,” Environ Earth Sci, vol. 62, pp. 1235–1243, 2011. https://doi.org/10.1007/s12665-010- 0611-6
dc.relation[17] Q. Mahmood, N. Mirza & S. Shaheen, “Phytoremediation Using Algae and Macrophytes: I, “L. Newman, A. A. Ansari, S. Singh Gill Ritu Gill & G. R. Lanza"Phytoremediation. Manegement of Environmental Contaminantes, vol. 2, Eds. Springer, pp. 265–289, 2015. https://doi.org/10.1007/978-3-319-10969-5_22
dc.relation[18] T. M. Galal, F. A. Gharib, S. M. Ghazi & K. H. Mansour, “Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands,” Environ Sci Pollut Res, vol. 24, no. 27, pp. 21636–21648, 2017. https://doi.org/10.1007/s11356-017-9793-8
dc.relation[19] Herniwanti, J. B. Priatmadi, B. Yanuwiadi & Soemarno, “Water Plants Characteristic for Phytoremediation of Acid Mine Drainage Passive Treatment,” Int J Basic Appl Sci IJBAS-IJENS, vol.13, no. 06, pp. 14–20, Dec. 2013. Available: http://www.ijens.org/Vol_13_I_06/136706-2525-IJBAS-IJENS.pdf
dc.relation[20] J. O. Rangel,. Colombia Diversidad Biotica IX. Ciengas de Cordoba: Biodiversidad, ecologia y manejo ambiental, BO, CO: UNAL, 2010.
dc.relation[21] H. A. Casierra-Martínez, J. C. Charris-Olmos, A. Caselles-Osorio & A. E. Parody-Muñoz, “Organic Matter and Nutrients Removal in Tropical Constructed Wetlands Using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae),” Water Air & Soil Pollut, vol. 228, no. 9, pp. 1–10, 2017. https://doi. org/10.1007/s11270-017-3531-1
dc.relation[22] L. I. Ramos,. Vegetación Asociada a Paisajes Productivos de la Orinoquia Colombiana, Vvc., Col.: UNILLANOS, 2019.
dc.relation[23] A. Ortiz, S. Torres, Y. Quintana & A. López, “Primer reporte de resistencia de Cyperus odoratus L. al herbicida pirazosulfuron-etilo,” Bioagro, vol. 27, no. 1, pp. 45–50, 2015. Available: http://www.ucla.edu.ve/ bioagro/
dc.relation[24] J. A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas & Mi. A. Balderas-Plata, “Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes four aquatic macrophytes,” Int J Phytoremediation, vol. 19, no. 3, pp. 239–245, 2017. https://doi.org/10.1080/15226514.2016.1207610
dc.relation[25] A. Caselles-Osorio & J. García, “Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands,” Sci Tot Env, vol. 378, no. 3, pp. 253–262, Jun. 2007. https://doi.org/10.1016/j.scitotenv.2007.02.031
dc.relation[26] S. Soda, T. Hamada, Y. Yamaoka, M. Ike, H. Nakazato, Y. Saeki, T. Kasamatsu & Y. Sakurai, “Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant : Bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius,” Eco Eng, vol. 39, pp. 63–70, Feb. 2012. https://doi.org/10.1016/j.ecoleng.2011.11.014
dc.relation[27] E. W. Rice, R. B. Baird & A. D. Eaton, Standard Methods for examination of water and wastewater. 22 Ed, WA, USA.: American Public Health Association/American Water Wors Association & Water Enviroment Federation, 2012.
dc.relation[28] K. R. Reddy & R. D. DeLaune, Biochemistry of wetlands. Science and applications, BR, USA: CRC Press/ Taylor & Francis Group, 2008. https://doi.org/10.1201/9780203491454
dc.relation[29] K. R. Reddy & R. D. Delaune, Biogeochemistry of wetlands: Science and Applications, BR, USA: CRC Press/Taylor & Francis Group, 2008. https://doi.org/10.1201/9780203491454
dc.relation[30] M. Gill, “Heavy metal stress in plants:a review,” IJAR, vol. 2, no. 6, pp. 1043–1055, 2014. Available: https:// www.journalijar.com/uploads/969_IJAR-3569.pdf
dc.relation[31] T. V. Ramachandra, P. B. Sudarshan, M. K. Mahesh & S. Vinay, “Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland , Bangalore,” J Env Man, vol. 206, pp. 1204–1210, Jan. 2018. https://doi.org/10.1016/j.jenvman.2017.10.014
dc.relation[32] V. Sinha, K. Pakshirajan & R. Chaturvedi, “Chromium tolerance , bioaccumulation and localization in plants : An overview,” J Env Man, vol. 206, pp. 715–730, Jan. 2018. https://doi.org/10.1016/j.jenvman.2017.10.033
dc.relation[33] J. Gao, J. Zhao, J. Zhanga, Q. Li, J. Gao, M. Cai & J. Zhang, “Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands,” J Cle Pro, vol. 261, pp. 121110–121110, Jul. 2020. https://doi.org/10.1016/j. jclepro.2020.121110
dc.relation[34] A. Basile, S. Sorbo, B. Conte, R. Castaldo, F. Trinchella, C. Capasso & V. Carginale, “Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes,” Int J Phytoremediat, vol. 14, no. 4, pp. 374–387, 2012. https://doi.org/10.1080/15226514.2011.620653
dc.relation[35] A. Kumar Y, R. Abbassi, N. Kumar, S. Satya, T. . Sreekrishnan & B. Mishra, “The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility,” CEJ, vol. 211–212, pp. 501–507, 15 Nov. 2012. https://doi.org/10.1016/j.cej.2012.09.039
dc.relation[36] H. R. Hadad, M. A. Maine & C. A. Bonetto, “Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment,” Chemosphere, vol. 63, no. 10, pp. 1744–1753, Jun. 2006. https://doi. org/10.1016/j.chemosphere.2005.09.014
dc.relation[37] R. Aryal, R. Nirola, S. Beecham & B. Sarkar, “International Biodeterioration & Biodegradation Influence of heavy metals in root chemistry of Cyperus vaginatus R . Br : A study through optical spectroscopy,” Int Biodeterior Biodegradation, vol. 113, pp. 201–207, 2016. Available: https://www.cabdirect.org/cabdirect/ abstract/20163284520
dc.relation[38] J. Teuchies, S. Jacobs, L. Oosterlee, L. Bervoets & P. Meire, “Role of plants in metal cycling in a tidal wetland : Implications for phytoremidiation,” Sci Tot Env, vol. 446-446, pp. 146–154, Feb. 2013. https://doi. org/10.1016/j.scitotenv.2012.11.088
dc.relation[39] M. Varma, A. K. Gupta, P. S. Ghosal & A. Majumder, “A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature,” Sci Tot Env, vol. 755, part. 2, pp. 142540–142540, Feb. 2021. https://doi.org/10.1016/j. scitotenv.2020.142540
dc.relation[40] W. M. Mayes, L. C. Batty, P. L. Younger, A. P. Jarvis, M. Kõiv, C. Vohla & U. Mander, “Wetland treatment at extremes of pH : A review,” Sci Tot Env, vol. 407, no. 13, pp. 3944–3957, Jun. 2008. https://doi.org/10.1016/j. scitotenv.2008.06.045
dc.relation[41] A. Reyhanitabar, M. M. Ardalan, N. Karimian, G. R. Savaghebi & R. J. Gilkes, “Kinetics of Zinc Sorption by Some Calcareous Soils of Iran,” J Agr Sci Tech, vol. 13, pp. 263–272, 2011. Available: https:// iranjournals.nlai.ir/bitstream/handle/123456789/589813/537E8A11A780A18363B4073D72E9F9F9. pdf?sequence=-1&isAllowed=y
dc.relation[42] M. Walaszek, M. Del Nero, P. Bois, L. Ribstein & A. Wanko, “Sorption behavior of copper, lead and zinc by a constructed wetland treating urban stormwater,” Ap Geochem, vol. 97, pp. 167–180, Oct. 2018. https:// doi.org/10.1016/j.apgeochem.2018.08.019
dc.relation[43] X. Xu & G. L. Mills, “Do constructed wetlands remove metals or increase metal bioavailability?,” J Env Man, vol. 218, pp. 245–255, Jul. 2018. https://doi.org/10.1016/j.jenvman.2018.04.014
dc.relation[44] V. A. Papaevangelou, G. D. Gikas & V. A. Tsihrintzis, “Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment,” Chemosphere, vol. 168, pp. 716–730, Feb. 2016. https://doi.org/10.1016/j. chemosphere.2016.11.002
dc.relation[45] A. M. Pat-Espadas, R. L. Portales, L. E. Amabilis-Sosa, G. Gómez & G. Vidal, “Review of Constructed Wetlands for Acid Mine Drainage Treatment,” Water, vol. 10, no. 11, pp. 1685–1685, 2018. https://doi. org/10.3390/w10111685
dc.relation[46] H. Ali, E. Khan & M. Anwar, “Chemosphere Phytoremediation of heavy metals — Concepts and applications,” Chemosphere, vol. 91, no. 7, pp. 869–881, May. 2013. https://doi.org/10.1016/j.chemosphere.2013.01.075
dc.relation[47] J. Vymazal & T. Březinová, “Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review,” CEJ, vol. 290, pp. 232–242, Apr. 2016. https://doi.org/10.1016/j.cej.2015.12.108
dc.relation[48] A. Dan, O. Masao, F. Yuta, S. Satoshi, I. Tomonori, M. Takashi & I. Michihiko, “Removal of heavy metals from synthetic landfill leachate in lab-scale vertical fl ow constructed wetlands,” Sci Tot Env, vol. 584–585, pp. 742–750, Apr. 2017. https://doi.org/10.1016/j.scitotenv.2017.01.112
dc.relation[49] C. A. Madera-Parra, E. J. Peña-Salamanca & J. A. Solarte-Soto, “Efecto de la concentración de metales pesado en la respuesta fisiológica y capacidad de acumulación de metales de tres especies vegetales tropicales empleadas en la fitorremediación de lixiviados provenientes de rellenos sanitarios,” Ing Compet, vol. 16, no. 2, pp. 179–188, 2014. https://doi.org/10.25100/iyc.v16i2.3693
dc.relation[50] G. Yu, G. Wang, J. Li, T. Chi, S. Wang, H. Peng, H. Chen, C. Du, C. Jiang, Y. Liu, L. Zhou & H. Wu, “Enhanced Cd 2 + and Zn 2 + removal from heavy metal wastewater in constructed wetlands with resistant microorganisms,” Bior Tech, vol. 316, no. May, pp. 123898–123898, Nov. 2020. https://doi.org/10.1016/j. biortech.2020.123898
dc.relation[51] M. Llugany, R. Tolrà, C. Poschnrieder & J. Barceló, “Hiperacumulación de metales : ¿una ventaja para la planta y para el hombre?,” Ecosistemas, vol. 16, no. 2, pp. 4–9, 2007. Available: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/124
dc.relation[52] M. Soleimani-Ahmadi, H. Vatandoost, A. A. Hanafi-Bojd, M. Zare, R. Safari, A. Mojahedi & F. Poorahmad-Garbandi, “Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran,” Asian Pac J Trop Med, vol. 6, no. 7, pp. 510–515, Jul. 2013. https://doi.org/10.1016/ S1995-7645(13)60087-5
dc.relation[53] R. Chandra, “Advances in Biodegradation and Bioremediation of Industrial Waste,” in R. Chandra, G. Saxena & V. KumarPhytoremediation of Environmental Pollutants : An Eco- Sustainable Green Technology to Environmental Management, BR. FL. USA.: CRC Press Taylor & Francis Group, pp. 1–30, Mar. 2015. Available: https://www.researchgate.net/publication/274249084_Phytoremediation_of_Environmental_Pollutants_An_Eco-Sustainable_Green_Technology_to_Environmental_Management
dc.relation[54] D. I. Caviedes-Rubio, D. R. Delgado & A. O. Amaya, “Remoción de metales pesados comúnmente generados por la actividad industrial , empleando macrófitas neotropicales,” P+L, vol. 11, no. 2, pp. 126–149, Jul.-Dic. 2016. Disponible en http://repository.lasallista.edu.co:8080/ojs/index.php/pl/article/view/1245
dc.relation[55] Z. B. Salem, X. Laffray, A. Al-Ashoor, H. Ayadi & L. Aleya, “Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site,” J Env Sci, vol. 54, pp. 56–68, Apr. 2017. https://doi.org/10.1016/j.jes.2015.10.039
dc.relation[56] M. Walaszek, M. Del Nero, P. Bois, L. Ribstein, O. Courson, A. Wanko & J. Laurent, “Sorption behavior of copper, lead and zinc by a constructed wetland treating urban stormwater,” Ap Geochem, vol. 97, pp. 167–180, Oct. 2018. https://doi.org/10.1016/j.apgeochem.2018.08.019
dc.relation[57] S. Tahervand & M. Jalali, “Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH,” GEXPLO, vol. 181, pp. 148–159, Oct. 2017. https://doi.org/10.1016/j.gexplo.2017.07.005
dc.relation88
dc.relation76
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3450
dc.subjectHumedales construidos de flujo subsuperficial
dc.subjectMetales pesados
dc.subjectFitorremediación
dc.subjectBio-concentración
dc.subjectTraslocación
dc.subjectCyperus odoratus
dc.subjectSubsurface flow constructed wetlands
dc.subjectHeavy metals
dc.subjectPhytoremediation
dc.subjectBio-concentration
dc.subjectTranslocation
dc.subjectCyperus odoratus
dc.titleChromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L.
dc.titleRemoción de cromo y zinc de aguas residuales sintéticas en un humedal construido plantado con Cyperus odoratus L
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución