dc.creatorAllahkarami, Esmaeil
dc.creatorDehghan Monfared, Abolfazl
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorDotto, Guilherme Luiz
dc.date2023-08-10T21:58:35Z
dc.date2023-08-10T21:58:35Z
dc.date2023
dc.date.accessioned2023-10-03T19:03:00Z
dc.date.available2023-10-03T19:03:00Z
dc.identifierAllahkarami, E., Dehghan Monfared, A., Silva, L.F.O. et al. Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci Rep 13, 167 (2023). https://doi.org/10.1038/s41598-023-27507-5
dc.identifierhttps://hdl.handle.net/11323/10377
dc.identifier10.1038/s41598-023-27507-5
dc.identifier2045-2322
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167124
dc.descriptionIn this research, the solid–liquid adsorption systems for MSAC (PbFe2O4 spinel-activated carbon)-phenol and pristine activated carbon-phenol were scrutinized from the thermodynamics and statistical physics (sta-phy) viewpoints. Experimental results indicated that MSAC composite outperformed pristine AC for the uptake of phenol from waste streams. By increasing the process temperature, the amount of phenol adsorbed onto both adsorbents, MSAC composite and pristine AC, decreased. Thermodynamic evaluations for MSAC demonstrated the spontaneous and exothermic characteristics of the adsorption process, while positive values of ΔG for pristine AC indicated a non-spontaneous process of phenol adsorption in all temperatures. In a mechanistic investigation, statistical physics modeling was applied to explore the responsible mechanism for phenol adsorption onto the MSAC composite and pristine AC. The single-layer model with one energy was the best model to describe the experimental data for both adsorbents. The adsorption energies of phenol onto both adsorbents were relatively smaller than 20 kJ/mol, indicating physical interactions. By increasing temperature from 298 to 358 K, the value of the absorbed amount of phenol onto the MSAC composite and pristine AC at saturation (Qsat) decreased from 158.94 and 138.91 to 115.23 and 112.34 mg/g, respectively. Mechanistic studies confirm the significant role of metallic hydroxides in MSAC to facilitate the removal of phenol through a strong interaction with phenol molecules, as compared with pristine activated carbon.
dc.format16 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherNature Publishing Group
dc.publisherUnited Kingdom
dc.relationScientific Reports
dc.relation1. Dehmani, Y. et al. Unravelling the adsorption mechanism of phenol on zinc oxide at various coverages via statistical physics, artifcial neural network modeling and ab initio molecular dynamics. Chem. Eng. J. 452, 139171 (2023).
dc.relation2. Vakili, M. et al. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 224, 373–387. https://doi.org/10.1016/j.seppur.2019.05.040 (2019).
dc.relation3. Hussain, A., Dubey, S. K. & Kumar, V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resour. Ind. 11, 81–90 (2015).
dc.relation4. Zhou, W. et al. Electrochemical regeneration of carbon-based adsorbents: A review of regeneration mechanisms, reactors, and future prospects. Chem. Eng. J. Adv. 5, 100083. https://doi.org/10.1016/j.ceja.2020.100083 (2021).
dc.relation5. Omorogie, M. O., Babalola, J. O. & Unuabonah, E. I. Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: A critical review. Desalin. Water Treat. 57, 518–544 (2016).
dc.relation6. Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Karri, R. R. et al.) 35–53 (Elsevier, 2021).
dc.relation7. Ochando-Pulido, J. M., Vellido-Pérez, J. A., González-Hernández, R. & Martínez-Férez, A. Optimization and modeling of twophase olive-oil washing wastewater integral treatment and phenolic compounds recovery by novel weak-base ion exchange resins. Sep. Purif. Technol. 249, 117084 (2020).
dc.relation8. Kong, X., Gao, H., Song, X., Deng, Y. & Zhang, Y. Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism. Chem. Phys. Lett. 739, 137046 (2020).
dc.relation9. Gao, P., Feng, Y., Zhang, Z., Liu, J. & Ren, N. Comparison of competitive and synergetic adsorption of three phenolic compounds on river sediment. Environ. Pollut. 159, 2876–2881. https://doi.org/10.1016/j.envpol.2011.04.047 (2011).
dc.relation10. Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Karri, R. R. et al.) 75–93 (Elsevier, 2021).
dc.relation11. Cañadas, R., González-Miquel, M., González, E. J., Díaz, I. & Rodríguez, M. Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Sep. Purif. Technol. 254, 117590 (2021).
dc.relation12. Barros, F., Dykes, L., Awika, J. M. & Rooney, L. W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 58, 305–312 (2013).
dc.relation13. Al-Huwaidi, J. S., Al-Obaidi, M. A., Jarullah, A. T., Kara-Zaïtri, C. & Mujtaba, I. M. Modelling and simulation of a hybrid system of trickle bed reactor and multistage reverse osmosis process for the removal of phenol from wastewater. Comput. Chem. Eng. 153, 107452 (2021).
dc.relation14. Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M. J. & Izquierdo, C. Regeneration of carbonaceous adsorbents. Part I: Termal regeneration. Microporous Mesoporous Mater. 202, 259–276. https://doi.org/10.1016/j.micromeso. 2014.02.045 (2015).
dc.relation15. Shaker, M. & Elhamifar, D. Magnetic methylene-based mesoporous organosilica composite-supported IL/Pd: A powerful and highly recoverable catalyst for oxidative coupling of phenols and naphthols. Mater. Today Chem. 18, 100377. https://doi.org/10. 1016/j.mtchem.2020.100377 (2020).
dc.relation16. Supong, A. et al. Experimental and theoretical insight into the adsorption of phenol and 2, 4-dinitrophenol onto Tithonia diversifolia activated carbon. Appl. Surf. Sci. 529, 147046 (2020).
dc.relation17. Wu, Y. & Ke, Z. Novel Cu-doped zeolitic imidazolate framework-8 membranes supported on copper foam for highly efcient catalytic wet peroxide oxidation of phenol. Mater. Today Chem. 24, 100787. https://doi.org/10.1016/j.mtchem.2022.100787 (2022).
dc.relation18. Asnaoui, H., Dehmani, Y., Khalis, M. & Hachem, E.-K. Adsorption of phenol from aqueous solutions by Na–bentonite: Kinetic, equilibrium and thermodynamic studies. Int. J. Environ. Anal. Chem. https://doi.org/10.1008/03067319.2020.1763328 (2020).
dc.relation19. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. Adsorption of phenol by bentonite. Environ. Pollut. 107, 391–398. https:// doi.org/10.1016/S0269-7491(99)00173-6 (2000).
dc.relation20. Zhang, J., Qin, L., Yang, Y. & Liu, X. Porous carbon nanospheres aerogel based molecularly imprinted polymer for efcient phenol adsorption and removal from wastewater. Sep. Purif. Technol. 274, 119029 (2021).
dc.relation21. Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M. & Pittman, C. U. Jr. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 172, 1111–1125 (2011).
dc.relation22. Lammini, A. et al. Experimental and theoretical evaluation of synthetized cobalt oxide for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Arab. J. Chem. 15, 104364 (2022).
dc.relation23. Dehmani, Y. et al. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 312, 113383 (2020).
dc.relation24. Mohammed, B. B. et al. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J. Mol. Liq. 296, 111997 (2019).
dc.relation25. Allahkarami, E. & Rezai, B. Removal of cerium from diferent aqueous solutions using diferent adsorbents: A review. Process Saf. Environ. Prot. 124, 345–362. https://doi.org/10.1016/j.psep.2019.03.002 (2019).
dc.relation26. Allahkarami, E. & Rezai, B. A literature review of cerium recovery from diferent aqueous solutions. J. Environ. Chem. Eng. 9, 104956. https://doi.org/10.1016/j.jece.2020.104956 (2021).
dc.relation27. Al-Ghouti, M. A. & Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 393, 122383 (2020).
dc.relation28. He, S. et al. N-doped activated carbon for high-efciency ofoxacin adsorption. Microporous Mesoporous Mater. 335, 111848. https://doi.org/10.1016/j.micromeso.2022.111848 (2022).
dc.relation29. Obradović, M. et al. Ibuprofen and diclofenac sodium adsorption onto functionalized minerals: Equilibrium, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 335, 111795. https://doi.org/10.1016/j.micromeso.2022.111795 (2022).
dc.relation30. Yahia, M. B. et al. Modeling and interpretations by the statistical physics formalism of hydrogen adsorption isotherm on LaNi4.75Fe0.25. Int. J. Hydrog. Energy 38, 11536–11542 (2013).
dc.relation31. Sellaoui, L. et al. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib. 387, 103–110. https://doi.org/10.1016/j.fuid.2014.12.018 (2015).
dc.relation32. Kumar, A. et al. Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Sci. Total Environ. 800, 149410 (2021).
dc.relation33. Dąbrowski, A., Podkościelny, P., Hubicki, Z. & Barczak, M. Adsorption of phenolic compounds by activated carbon: A critical review. Chemosphere 58, 1049–1070 (2005).
dc.relation34. Hao, Z., Wang, C., Yan, Z., Jiang, H. & Xu, H. Magnetic particles modifcation of coconut shell-derived activated carbon and biochar for efective removal of phenol from water. Chemosphere 211, 962–969 (2018).
dc.relation35. Lawal, A. A. et al. Adsorption mechanism and efectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Environ. Pollut. 269, 116197 (2021).
dc.relation36. Pal, A. et al. A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons. Appl. Energy 264, 114720. https://doi.org/10.1016/j.apenergy.2020.114720 (2020).
dc.relation37. Karthikeyan, P., Vigneshwaran, S., Preethi, J. & Meenakshi, S. Preparation of novel cobalt ferrite coated-porous carbon composite by simple chemical co-precipitation method and their mechanistic performance. Diam. Relat. Mater. 108, 107922 (2020).
dc.relation38. Rocha, L. S. et al. Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review. Sci. Total Environ. 718, 137272 (2020).
dc.relation39. DehghanMonfared, A., Ghazanfari, M. H., Jamialahmadi, M. & Helalizadeh, A. Adsorption of silica nanoparticles onto calcite: Equilibrium, kinetic, thermodynamic and DLVO analysis. Chem. Eng. J. 281, 334–344. https://doi.org/10.1016/j.cej.2015.06.104 (2015).
dc.relation40. Heo, J. et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Biores. Technol. 281, 179–187 (2019).
dc.relation41. Ansari, F., Sobhani, A. & Salavati-Niasari, M. Sol-gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant. RSC Adv. 4, 63946–63950. https://doi.org/10.1039/c4ra11688g (2014).
dc.relation42. Maaz, K., Mumtaz, A., Hasanain, S. K. & Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007).
dc.relation43. Allahkarami, E., Soleimanpour Moghadam, N., Jamrotbe, B. & Azadmehr, A. Competitive adsorption of Ni(II) and Cu(II) ions from aqueous solution by vermiculite-alginate composite: Batch and fxed-bed column studies. J. Dispers. Sci. Technol. https://doi. org/10.1080/01932691.2021.2017297 (2021).
dc.relation44. Allahkarami, E., Azadmehr, A., Noroozi, F., Farrokhi, S. & Sillanpää, M. Nitrate adsorption onto surface-modifed red mud in batch and fxed-bed column systems: Equilibrium, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. 29, 48438–48452. https://doi.org/10.1007/s11356-022-19311-x (2022).
dc.relation45. Dehmani, Y. et al. Review of phenol adsorption on transition metal oxides and other adsorbents. J. Water Process Eng. 49, 102965 (2022).
dc.relation46. Wjihi, S., Aouaini, F., Erto, A., Balsamo, M. & Lamine, A. B. Advanced interpretation of CO2 adsorption thermodynamics onto porous solids by statistical physics formalism. Chem. Eng. J. 406, 126669. https://doi.org/10.1016/j.cej.2020.126669 (2021).
dc.relation47. Li, H. et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 390, 124513 (2020).
dc.relation48. Lorenc-Grabowska, E. Efect of micropore size distribution on phenol adsorption on steam activated carbons. Adsorption 22, 599–607 (2016).
dc.relation49. Bandosz, T. J. Activated Carbon Surfaces in Environmental Remediation (Elsevier, 2006).
dc.relation16
dc.relation1
dc.relation167
dc.relation13
dc.rights© 2023 Springer Nature Limited
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.nature.com/articles/s41598-023-27507-5
dc.subjectChemical engineering
dc.subjectEngineering
dc.titleToward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución