dc.creator | Satizabal-Gómez, Valentina | |
dc.creator | Collazos-Botero, Manuel Alejandro | |
dc.creator | Serna-Galvis, Efraím A. | |
dc.creator | Torres-Palma, Ricardo A. | |
dc.creator | Bravo-Suárez, Juan J. | |
dc.creator | Machuca-Martínez, Fiderman | |
dc.creator | Castilla-Acevedo, Samir Fernando | |
dc.date | 2021-09-06T17:03:08Z | |
dc.date | 2021-09-06T17:03:08Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:02:54Z | |
dc.date.available | 2023-10-03T19:02:54Z | |
dc.identifier | https://hdl.handle.net/11323/8636 | |
dc.identifier | https://doi.org/10.1016/j.mineng.2021.107031 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167106 | |
dc.description | This work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6 g L−1) and dissolved oxygen in solution (absence/presence) were studied. Lastly, the influence of phosphate, carbonate, and nitrate presence at different concentrations (50, 150, 350, and 500 mg L−1) on CN− elimination was tested. Additionally, the electric energy per order (EEO), a measure of the energy consumption in the process was determined, and a mechanistic view of CN− degradation was proposed. The results show that photolysis and alkaline activation of PS degraded 8 and 11% of CN−, respectively, whereas their combination presented a synergistic effect on CN− pollutant elimination. While oxygen had a vital role in photolysis due to the formation of 1O2 to oxidize CN− to CNO−, HO• and SO4•− were primarily responsible for CN− degradation by UVC/PS. It was also found that cyanide removal followed a pseudo-first-order kinetics whose apparent reaction rate constant (k) increased from 0.0104 to 0.0297 min−1 as the initial concentration of PS increased from 0.2 to 0.6 g L−1, indicating a strong dependency of the removal efficiency on the PS amount. Remarkably, cyanide degradation by the combined UVC/PS showed a high CN− conversion and selectivity even in the presence of high concentrations of phosphate, carbonate, and nitrate ions (500 mg L−1), which resulted in CN− removals higher than 80% after 60 min of degradation treatment. Furthermore, the EEO values were similar in the presence and absence of phosphate or carbonate; however, they decreased slightly with nitrate presence. All these results suggest the feasibility of the combined UVC/PS process for the elimination of cyanide such as that found in mining wastewater. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.relation | M. Abdullah
Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide
J. Phys. Chem., 94 (1990), pp. 6820-6825, 10.1021/j100380a051 | |
dc.relation | G.P. Anipsitakis, D.D. Dionysiou
Transition metal/UV-based advanced oxidation technologies for water decontamination
Appl. Catal. B Environ., 54 (2004), pp. 155-163, 10.1016/j.apcatb.2004.05.025 | |
dc.relation | APHA, 1998. APHA: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Water Work. Assoc. Environ. Fed. 552. | |
dc.relation | D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman
Standard electrode potentials involving radicals in aqueous solution: inorganic radicals
Bioinorg. React. Mech., 9 (2013), pp. 59-61, 10.1515/irm-2013-0005 | |
dc.relation | D. Behar, G. Czapski, I. Duchovny
Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions
J. Phys. Chem., 74 (1970), pp. 2206-2210, 10.1021/j100909a029 | |
dc.relation | D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers
Photocatalytic degradation for environmental applications – a review
J. Chem. Technol. Biotechnol., 77 (2001), pp. 102-116, 10.1002/jctb.532 | |
dc.relation | Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. In: Gavaskar, A.R., Chen, A.S.C. (Eds.), Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterrey, pp. 2A–05. | |
dc.relation | J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman
Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report)
Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627 | |
dc.relation | R.P. Buck, S. Singhadeja, L.B. Rogers
Ultraviolet absorption spectra of some inorganic ions in aqueous solutions
Anal. Chem., 26 (1954), pp. 1240-1242, 10.1021/ac60091a051 | |
dc.relation | G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross
Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution
At. Energy, 17 (1988), pp. 513-886, 10.1063/1.555805 | |
dc.relation | J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni
Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization
Water Res., 98 (2016), pp. 39-46, 10.1016/j.watres.2016.04.004 | |
dc.relation | Center for Human Rights and Environment, 2011. Efectos del cianuro en la salud humana [WWW Document]. Cent. Hum. Rights Enviroment. | |
dc.relation | J. Chen, Y. Qian, H. Liu, T. Huang
Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO
Environ. Sci. Pollut. Res., 23 (2016), pp. 3824-3833, 10.1007/s11356-015-5630-0 | |
dc.relation | L. Chen, T. Cai, C. Cheng, Z. Xiong, D. Ding
Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: a comparative study
Chem. Eng. J., 351 (2018), pp. 1137-1146, 10.1016/j.cej.2018.06.107 | |
dc.relation | Y. Deng, R. Zhao
Advanced oxidation processes (AOPs) in wastewater treatment
Curr. Pollut. Reports, 1 (2015), pp. 167-176, 10.1007/s40726-015-0015-z | |
dc.relation | L. Dogliotti, E. Hayon
Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions
J. Phys. Chem., 71 (1967), pp. 2511-2516, 10.1021/j100867a019 | |
dc.relation | D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong
Cyanide in Water and Soil: Chemistry, Risk, and Management
(first ed.), Taylor & Francis, Boca Raton (2006) | |
dc.relation | M. Ericsson, O. Löf
Mining’s contribution to national economies between 1996 and 2016
Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6 | |
dc.relation | R.M. Felix-Navarro, S.W. Lin, V. Violante-Delgadillo, A. Zizumbo-Lopez, S. Perez-Sicairos
Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte Aqueous solutions
J. Mex. Chem. Soc., 55 (2011), pp. 51-56 | |
dc.relation | O.S. Furman, A.L. Teel, R.J. Watts
Mechanism of base activation of persulfate
Environ. Sci. Technol., 44 (2010), pp. 6423-6428, 10.1021/es1013714 | |
dc.relation | F. Ghanbari, M. Moradi, F. Gohari
Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals
J. Water Process Eng., 9 (2016), pp. 22-28, 10.1016/j.jwpe.2015.11.011 | |
dc.relation | N. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment
J. Environ. Chem. Eng., 8 (2020), p. 104336, 10.1016/j.jece:2020.104336 | |
dc.relation | M. Gonzalez, E. Oliveros, M. Worner, A. Braun
Vacuum-ultraviolet photolysis of aqueous reaction systems
J. Photochem. Photobiol. C Photochem. Rev., 5 (2004), pp. 225-246, 10.1016/j.jphotochemrev.2004.10.002 | |
dc.relation | J.J. Guerrero
Cianuro: toxicidad y destrucción biológica
El Ing. minas, 10 (2005), pp. 22-25 | |
dc.relation | M. Guilloton, F. Karst
A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid
Anal. Biochem., 149 (1985), pp. 291-295, 10.1016/0003-2697(85)90572-X | |
dc.relation | W. Huang, A. Bianco, M. Brigante, G. Mailhot
UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: efficiency, mechanism and effect of various water constituents
J. Hazard. Mater., 347 (2018), pp. 279-287, 10.1016/j.jhazmat.2018.01.006 | |
dc.relation | I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke
Critical review of the science and sustainability of persulphate advanced oxidation processes
Chem. Eng. J., 338 (2018), pp. 651-669, 10.1016/j.cej.2018.01.034 | |
dc.relation | C.A. Johnson
The fate of cyanide in leach wastes at gold mines: an environmental perspective
Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023 | |
dc.relation | C.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye
Cyanide speciation at four gold leach operations undergoing remediation
Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334n | |
dc.relation | S.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez
Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: a new perspective for mining wastewater treatment
Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972 | |
dc.relation | S.H. Kim, S.W. Lee, G.M. Lee, B.T. Lee, S.T. Yun, S.O. Kim
Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate
Chemosphere, 143 (2016), pp. 106-114, 10.1016/j.chemosphere.2015.07.006 | |
dc.relation | U.K. Klaning, K. Sehested, E.H. Appelman
Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F
Inorg. Chem., 30 (1991), pp. 3582-3584, 10.1021/ic00018a040 | |
dc.relation | J. Kochany, E. Lipczynska-Kochany
Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2
Chemosphere, 25 (1992), pp. 1769-1782, 10.1016/0045-6535(92)90018-M | |
dc.relation | I. Kraljić
Photolytic determination of SO4 rate constants
Int. J. Radiat. Phys. Chem., 2 (1970), pp. 59-68, 10.1016/0020-7055(70)90017-3 | |
dc.relation | Krumova, K., Cosa, G., 2016. Singlet Oxygen, Comprehensive Series in Photochemistry and Photobiology – Volume 13, Comprehensive Series in Photochemical & Photobiological Sciences. Royal Society of Chemistry, Cambridge. doi: 10.1039/9781782622208. | |
dc.relation | N. Kuyucak, A. Akcil
Cyanide and removal options from effluents in gold mining and metallurgical processes
Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027 | |
dc.relation | Liang, C., Lei, J.-H., 2015. Identification of active radical species in alkaline persulfate oxidation. Water Environ. Res. doi: 10.2175/106143015x14338845154986. | |
dc.relation | C. Liang, H.-W. Su
Identification of sulfate and hydroxyl radicals in thermally activated persulfate
Ind. Eng. Chem. Res., 48 (2009), pp. 5558-5562, 10.1021/ie9002848 | |
dc.relation | Logsdon, M.J., Hagelstein, K., Mudder, T.I., 1999. The Management of Cyanide in Gold Extraction. Ottawa. | |
dc.relation | J. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen
Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water
Chemosphere, 190 (2018), pp. 296-306, 10.1016/j.chemosphere.2017.09.148 | |
dc.relation | MADS, M.D.A.Y.D.S., 2015. Resolución 631 de 2015. D. Of. No. 49.486 18 abril 2015 2015, 73. | |
dc.relation | P. Maruthamuthu, P. Neta
Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds
J. Phys. Chem., 82 (1978), pp. 710-713, 10.1021/j100495a019 | |
dc.relation | L.W. Matzek, K.E. Carter
Activated persulfate for organic chemical degradation: a review
Chemosphere, 151 (2016), pp. 178-188, 10.1016/j.chemosphere.2016.02.055 | |
dc.relation | S.R. Mousavi, M. Balali-Mood, B. Riahi-Zanjani, M. Sadeghi
Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters
J. Res. Med. Sci., 18 (2013), pp. 65-69 | |
dc.relation | G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohiyan
Comparing the efficacy of VUV and UVC/S2O82 advanced oxidation processes for degradation and mineralization of cyanide in wastewater
Chem. Eng. J., 294 (2016), pp. 273-280, 10.1016/j.cej.2016.02.113 | |
dc.relation | S.L. Murov, I. Carmichael, G.L. Hug
Handbook of Photochemistry Second Edition
(second. ed.), Marcel Dekker, Inc., New York (1993) | |
dc.relation | W.A. Noyes
Oxygen effects in photochemical systems
Radiat. Res. Suppl., 1 (1959), p. 164, 10.2307/3583637 | |
dc.relation | K. Osathaphan, W. Kittisarn, P. Chatchaitanawat, R.A. Yngard, H. Kim, V.K. Sharma
Oxidation of Ni (II) – cyano and Co (III) – cyano complexes by Ferrate (VI): effect of pH
J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst Environ. Eng., 49 (2014), pp. 1380-1384, 10.1080/10934529.2014.928250 | |
dc.relation | K. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma
Photocatalytic degradation of Ni (II) – Cyano and Co (III) – cyano complexes
Water. Air. Soil Pollut., 224 (2013), 10.1007/s11270-013-1647-5 | |
dc.relation | M.A. Oturan, J.-J. Aaron
Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
Crit. Rev. Environ. Sci. Technol., 44 (2014), pp. 2577-2641, 10.1080/10643389.2013.829765 | |
dc.relation | J.A. Pedraza-Avella, P. Acevedo-Peña, J.E. Pedraza-Rosas
Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach
Catal. Today, 133–135 (2008), pp. 611-618, 10.1016/j.cattod.2007.12.063 | |
dc.relation | C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang
Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants
Chemosphere, 151 (2016), pp. 280-288, 10.1016/j.chemosphere.2016.02.089 | |
dc.relation | R.D. Rajesh, G. Abhinav, B. Chandrajit
Cyanide in industrial wastewaters and its removal: a review on biotreatment
J. Hazard. Mater., 163 (2009), pp. 1-11, 10.1016/j.jhazmat.2008.06.051 | |
dc.relation | A.V. Ram
Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre
Rev. Med. del Perú, 71 (2010), pp. 54-61, 10.1016/S0166-445X(96)00815-6 | |
dc.relation | G.M. Ritcey
Tailings management in gold plants
Hydrometallurgy, 78 (2005), pp. 3-20, 10.1016/j.hydromet.2005.01.001 | |
dc.relation | A.B. Ross, P. Neta
Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution
(first ed.), National Standard Reference Data System, Notre Dame (1979) | |
dc.relation | J.A. Rosso
Caracterización y reactividad de los radicales fosfato y polifosfato en solución acuosa
Universidad Nacional de La Plata (2002) | |
dc.relation | Samir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, 2020. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes. J. Hazard. Mater. 392, NA. doi: 10.1016/j.jhazmat.2020.122389. | |
dc.relation | M. Sarla, M. Pandit, D.K. Tyagi, J.C. Kapoor
Oxidation of cyanide in aqueous solution by chemical and photochemical process
J. Hazard. Mater., 116 (2004), pp. 49-56, 10.1016/j.jhazmat.2004.06.035 | |
dc.relation | C. Tan, N. Gao, Y. Deng, N. An, J. Deng
Heat-activated persulfate oxidation of diuron in water
Chem. Eng. J., 203 (2012), pp. 294-300, 10.1016/j.cej.2012.07.005 | |
dc.relation | L.A.C. Teixeira, M.T.C. Arellano, C. Marquez Sarmiento, L. Yokoyama, F.V.D.F. Araujo
Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite
Miner. Eng., 50–51 (2013), pp. 57-63, 10.1016/j.mineng.2013.06.007 | |
dc.relation | S. Tian, Y. Li, H. Zeng, W. Guan, Y. Wang, X. Zhao
Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation
J. Colloid Interface Sci., 482 (2016), pp. 205-211, 10.1016/j.jcis.2016.07.024 | |
dc.relation | S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou
Chemistry of persulfates in water and wastewater treatment: a review
Chem. Eng. J., 330 (2017), pp. 44-62, 10.1016/j.cej.2017.07.132 | |
dc.relation | J. Wang, S. Wang
Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
Chem. Eng. J., 334 (2018), pp. 1502-1517, 10.1016/j.cej.2017.11.059 | |
dc.relation | K. Winkelmann, V.K. Sharma, Y. Lin, K.A. Shreve, C. Winkelmann, L.J. Hoisington, R.A. Yngard
Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system
Chemosphere, 72 (2008), pp. 1694-1699, 10.1016/j.chemosphere.2008.05.008 | |
dc.relation | Y.i. Yang, J.J. Pignatello, J. Ma, W.A. Mitch
Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)
Environ. Sci. Technol., 48 (2014), pp. 2344-2351, 10.1021/es404118q | |
dc.relation | A.A. Yawalkar, D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers
Solar-assisted photochemical and photocatalytic degradation of phenol
J. Chem. Technol. Biotechnol., 76 (2001), pp. 363-370, 10.1002/jctb.390 | |
dc.relation | Young, C.A., Jordan, T.S., Tech, M., 1995. Cyanide remediation: current and past technologies. Proc. 10th Annu. Conf. Hazard. Waste Res. 104–129. | |
dc.relation | R.G. Zepp, J. Hoigne, H. Bader
Nitrate-induced photooxidation of trace organic chemicals in water
Environ. Sci. Technol., 21 (1987), pp. 443-450, 10.1021/es00159a004 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Minerals Engineering | |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S0892687521002600 | |
dc.subject | Mining wastewater | |
dc.subject | Persulfate | |
dc.subject | Advanced oxidation process | |
dc.subject | Free cyanide degradation | |
dc.subject | Dissolved oxygen | |
dc.subject | Inorganic ions | |
dc.title | Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |