dc.creatorSatizabal-Gómez, Valentina
dc.creatorCollazos-Botero, Manuel Alejandro
dc.creatorSerna-Galvis, Efraím A.
dc.creatorTorres-Palma, Ricardo A.
dc.creatorBravo-Suárez, Juan J.
dc.creatorMachuca-Martínez, Fiderman
dc.creatorCastilla-Acevedo, Samir Fernando
dc.date2021-09-06T17:03:08Z
dc.date2021-09-06T17:03:08Z
dc.date2021
dc.date.accessioned2023-10-03T19:02:54Z
dc.date.available2023-10-03T19:02:54Z
dc.identifierhttps://hdl.handle.net/11323/8636
dc.identifierhttps://doi.org/10.1016/j.mineng.2021.107031
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167106
dc.descriptionThis work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6 g L−1) and dissolved oxygen in solution (absence/presence) were studied. Lastly, the influence of phosphate, carbonate, and nitrate presence at different concentrations (50, 150, 350, and 500 mg L−1) on CN− elimination was tested. Additionally, the electric energy per order (EEO), a measure of the energy consumption in the process was determined, and a mechanistic view of CN− degradation was proposed. The results show that photolysis and alkaline activation of PS degraded 8 and 11% of CN−, respectively, whereas their combination presented a synergistic effect on CN− pollutant elimination. While oxygen had a vital role in photolysis due to the formation of 1O2 to oxidize CN− to CNO−, HO• and SO4•− were primarily responsible for CN− degradation by UVC/PS. It was also found that cyanide removal followed a pseudo-first-order kinetics whose apparent reaction rate constant (k) increased from 0.0104 to 0.0297 min−1 as the initial concentration of PS increased from 0.2 to 0.6 g L−1, indicating a strong dependency of the removal efficiency on the PS amount. Remarkably, cyanide degradation by the combined UVC/PS showed a high CN− conversion and selectivity even in the presence of high concentrations of phosphate, carbonate, and nitrate ions (500 mg L−1), which resulted in CN− removals higher than 80% after 60 min of degradation treatment. Furthermore, the EEO values were similar in the presence and absence of phosphate or carbonate; however, they decreased slightly with nitrate presence. All these results suggest the feasibility of the combined UVC/PS process for the elimination of cyanide such as that found in mining wastewater.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationM. Abdullah Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide J. Phys. Chem., 94 (1990), pp. 6820-6825, 10.1021/j100380a051
dc.relationG.P. Anipsitakis, D.D. Dionysiou Transition metal/UV-based advanced oxidation technologies for water decontamination Appl. Catal. B Environ., 54 (2004), pp. 155-163, 10.1016/j.apcatb.2004.05.025
dc.relationAPHA, 1998. APHA: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Water Work. Assoc. Environ. Fed. 552.
dc.relationD.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman Standard electrode potentials involving radicals in aqueous solution: inorganic radicals Bioinorg. React. Mech., 9 (2013), pp. 59-61, 10.1515/irm-2013-0005
dc.relationD. Behar, G. Czapski, I. Duchovny Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions J. Phys. Chem., 74 (1970), pp. 2206-2210, 10.1021/j100909a029
dc.relationD.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Photocatalytic degradation for environmental applications – a review J. Chem. Technol. Biotechnol., 77 (2001), pp. 102-116, 10.1002/jctb.532
dc.relationBlock, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. In: Gavaskar, A.R., Chen, A.S.C. (Eds.), Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterrey, pp. 2A–05.
dc.relationJ.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report) Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627
dc.relationR.P. Buck, S. Singhadeja, L.B. Rogers Ultraviolet absorption spectra of some inorganic ions in aqueous solutions Anal. Chem., 26 (1954), pp. 1240-1242, 10.1021/ac60091a051
dc.relationG.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution At. Energy, 17 (1988), pp. 513-886, 10.1063/1.555805
dc.relationJ.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization Water Res., 98 (2016), pp. 39-46, 10.1016/j.watres.2016.04.004
dc.relationCenter for Human Rights and Environment, 2011. Efectos del cianuro en la salud humana [WWW Document]. Cent. Hum. Rights Enviroment.
dc.relationJ. Chen, Y. Qian, H. Liu, T. Huang Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO Environ. Sci. Pollut. Res., 23 (2016), pp. 3824-3833, 10.1007/s11356-015-5630-0
dc.relationL. Chen, T. Cai, C. Cheng, Z. Xiong, D. Ding Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: a comparative study Chem. Eng. J., 351 (2018), pp. 1137-1146, 10.1016/j.cej.2018.06.107
dc.relationY. Deng, R. Zhao Advanced oxidation processes (AOPs) in wastewater treatment Curr. Pollut. Reports, 1 (2015), pp. 167-176, 10.1007/s40726-015-0015-z
dc.relationL. Dogliotti, E. Hayon Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions J. Phys. Chem., 71 (1967), pp. 2511-2516, 10.1021/j100867a019
dc.relationD.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong Cyanide in Water and Soil: Chemistry, Risk, and Management (first ed.), Taylor & Francis, Boca Raton (2006)
dc.relationM. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6
dc.relationR.M. Felix-Navarro, S.W. Lin, V. Violante-Delgadillo, A. Zizumbo-Lopez, S. Perez-Sicairos Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte Aqueous solutions J. Mex. Chem. Soc., 55 (2011), pp. 51-56
dc.relationO.S. Furman, A.L. Teel, R.J. Watts Mechanism of base activation of persulfate Environ. Sci. Technol., 44 (2010), pp. 6423-6428, 10.1021/es1013714
dc.relationF. Ghanbari, M. Moradi, F. Gohari Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals J. Water Process Eng., 9 (2016), pp. 22-28, 10.1016/j.jwpe.2015.11.011
dc.relationN. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment J. Environ. Chem. Eng., 8 (2020), p. 104336, 10.1016/j.jece:2020.104336
dc.relationM. Gonzalez, E. Oliveros, M. Worner, A. Braun Vacuum-ultraviolet photolysis of aqueous reaction systems J. Photochem. Photobiol. C Photochem. Rev., 5 (2004), pp. 225-246, 10.1016/j.jphotochemrev.2004.10.002
dc.relationJ.J. Guerrero Cianuro: toxicidad y destrucción biológica El Ing. minas, 10 (2005), pp. 22-25
dc.relationM. Guilloton, F. Karst A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid Anal. Biochem., 149 (1985), pp. 291-295, 10.1016/0003-2697(85)90572-X
dc.relationW. Huang, A. Bianco, M. Brigante, G. Mailhot UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: efficiency, mechanism and effect of various water constituents J. Hazard. Mater., 347 (2018), pp. 279-287, 10.1016/j.jhazmat.2018.01.006
dc.relationI.A. Ike, K.G. Linden, J.D. Orbell, M. Duke Critical review of the science and sustainability of persulphate advanced oxidation processes Chem. Eng. J., 338 (2018), pp. 651-669, 10.1016/j.cej.2018.01.034
dc.relationC.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023
dc.relationC.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334n
dc.relationS.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: a new perspective for mining wastewater treatment Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972
dc.relationS.H. Kim, S.W. Lee, G.M. Lee, B.T. Lee, S.T. Yun, S.O. Kim Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate Chemosphere, 143 (2016), pp. 106-114, 10.1016/j.chemosphere.2015.07.006
dc.relationU.K. Klaning, K. Sehested, E.H. Appelman Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F Inorg. Chem., 30 (1991), pp. 3582-3584, 10.1021/ic00018a040
dc.relationJ. Kochany, E. Lipczynska-Kochany Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2 Chemosphere, 25 (1992), pp. 1769-1782, 10.1016/0045-6535(92)90018-M
dc.relationI. Kraljić Photolytic determination of SO4 rate constants Int. J. Radiat. Phys. Chem., 2 (1970), pp. 59-68, 10.1016/0020-7055(70)90017-3
dc.relationKrumova, K., Cosa, G., 2016. Singlet Oxygen, Comprehensive Series in Photochemistry and Photobiology – Volume 13, Comprehensive Series in Photochemical & Photobiological Sciences. Royal Society of Chemistry, Cambridge. doi: 10.1039/9781782622208.
dc.relationN. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027
dc.relationLiang, C., Lei, J.-H., 2015. Identification of active radical species in alkaline persulfate oxidation. Water Environ. Res. doi: 10.2175/106143015x14338845154986.
dc.relationC. Liang, H.-W. Su Identification of sulfate and hydroxyl radicals in thermally activated persulfate Ind. Eng. Chem. Res., 48 (2009), pp. 5558-5562, 10.1021/ie9002848
dc.relationLogsdon, M.J., Hagelstein, K., Mudder, T.I., 1999. The Management of Cyanide in Gold Extraction. Ottawa.
dc.relationJ. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water Chemosphere, 190 (2018), pp. 296-306, 10.1016/j.chemosphere.2017.09.148
dc.relationMADS, M.D.A.Y.D.S., 2015. Resolución 631 de 2015. D. Of. No. 49.486 18 abril 2015 2015, 73.
dc.relationP. Maruthamuthu, P. Neta Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds J. Phys. Chem., 82 (1978), pp. 710-713, 10.1021/j100495a019
dc.relationL.W. Matzek, K.E. Carter Activated persulfate for organic chemical degradation: a review Chemosphere, 151 (2016), pp. 178-188, 10.1016/j.chemosphere.2016.02.055
dc.relationS.R. Mousavi, M. Balali-Mood, B. Riahi-Zanjani, M. Sadeghi Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters J. Res. Med. Sci., 18 (2013), pp. 65-69
dc.relationG. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohiyan Comparing the efficacy of VUV and UVC/S2O82 advanced oxidation processes for degradation and mineralization of cyanide in wastewater Chem. Eng. J., 294 (2016), pp. 273-280, 10.1016/j.cej.2016.02.113
dc.relationS.L. Murov, I. Carmichael, G.L. Hug Handbook of Photochemistry Second Edition (second. ed.), Marcel Dekker, Inc., New York (1993)
dc.relationW.A. Noyes Oxygen effects in photochemical systems Radiat. Res. Suppl., 1 (1959), p. 164, 10.2307/3583637
dc.relationK. Osathaphan, W. Kittisarn, P. Chatchaitanawat, R.A. Yngard, H. Kim, V.K. Sharma Oxidation of Ni (II) – cyano and Co (III) – cyano complexes by Ferrate (VI): effect of pH J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst Environ. Eng., 49 (2014), pp. 1380-1384, 10.1080/10934529.2014.928250
dc.relationK. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma Photocatalytic degradation of Ni (II) – Cyano and Co (III) – cyano complexes Water. Air. Soil Pollut., 224 (2013), 10.1007/s11270-013-1647-5
dc.relationM.A. Oturan, J.-J. Aaron Advanced oxidation processes in water/wastewater treatment: principles and applications. A review Crit. Rev. Environ. Sci. Technol., 44 (2014), pp. 2577-2641, 10.1080/10643389.2013.829765
dc.relationJ.A. Pedraza-Avella, P. Acevedo-Peña, J.E. Pedraza-Rosas Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach Catal. Today, 133–135 (2008), pp. 611-618, 10.1016/j.cattod.2007.12.063
dc.relationC. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants Chemosphere, 151 (2016), pp. 280-288, 10.1016/j.chemosphere.2016.02.089
dc.relationR.D. Rajesh, G. Abhinav, B. Chandrajit Cyanide in industrial wastewaters and its removal: a review on biotreatment J. Hazard. Mater., 163 (2009), pp. 1-11, 10.1016/j.jhazmat.2008.06.051
dc.relationA.V. Ram Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre Rev. Med. del Perú, 71 (2010), pp. 54-61, 10.1016/S0166-445X(96)00815-6
dc.relationG.M. Ritcey Tailings management in gold plants Hydrometallurgy, 78 (2005), pp. 3-20, 10.1016/j.hydromet.2005.01.001
dc.relationA.B. Ross, P. Neta Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution (first ed.), National Standard Reference Data System, Notre Dame (1979)
dc.relationJ.A. Rosso Caracterización y reactividad de los radicales fosfato y polifosfato en solución acuosa Universidad Nacional de La Plata (2002)
dc.relationSamir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, 2020. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes. J. Hazard. Mater. 392, NA. doi: 10.1016/j.jhazmat.2020.122389.
dc.relationM. Sarla, M. Pandit, D.K. Tyagi, J.C. Kapoor Oxidation of cyanide in aqueous solution by chemical and photochemical process J. Hazard. Mater., 116 (2004), pp. 49-56, 10.1016/j.jhazmat.2004.06.035
dc.relationC. Tan, N. Gao, Y. Deng, N. An, J. Deng Heat-activated persulfate oxidation of diuron in water Chem. Eng. J., 203 (2012), pp. 294-300, 10.1016/j.cej.2012.07.005
dc.relationL.A.C. Teixeira, M.T.C. Arellano, C. Marquez Sarmiento, L. Yokoyama, F.V.D.F. Araujo Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite Miner. Eng., 50–51 (2013), pp. 57-63, 10.1016/j.mineng.2013.06.007
dc.relationS. Tian, Y. Li, H. Zeng, W. Guan, Y. Wang, X. Zhao Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation J. Colloid Interface Sci., 482 (2016), pp. 205-211, 10.1016/j.jcis.2016.07.024
dc.relationS. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou Chemistry of persulfates in water and wastewater treatment: a review Chem. Eng. J., 330 (2017), pp. 44-62, 10.1016/j.cej.2017.07.132
dc.relationJ. Wang, S. Wang Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants Chem. Eng. J., 334 (2018), pp. 1502-1517, 10.1016/j.cej.2017.11.059
dc.relationK. Winkelmann, V.K. Sharma, Y. Lin, K.A. Shreve, C. Winkelmann, L.J. Hoisington, R.A. Yngard Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system Chemosphere, 72 (2008), pp. 1694-1699, 10.1016/j.chemosphere.2008.05.008
dc.relationY.i. Yang, J.J. Pignatello, J. Ma, W.A. Mitch Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) Environ. Sci. Technol., 48 (2014), pp. 2344-2351, 10.1021/es404118q
dc.relationA.A. Yawalkar, D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Solar-assisted photochemical and photocatalytic degradation of phenol J. Chem. Technol. Biotechnol., 76 (2001), pp. 363-370, 10.1002/jctb.390
dc.relationYoung, C.A., Jordan, T.S., Tech, M., 1995. Cyanide remediation: current and past technologies. Proc. 10th Annu. Conf. Hazard. Waste Res. 104–129.
dc.relationR.G. Zepp, J. Hoigne, H. Bader Nitrate-induced photooxidation of trace organic chemicals in water Environ. Sci. Technol., 21 (1987), pp. 443-450, 10.1021/es00159a004
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceMinerals Engineering
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0892687521002600
dc.subjectMining wastewater
dc.subjectPersulfate
dc.subjectAdvanced oxidation process
dc.subjectFree cyanide degradation
dc.subjectDissolved oxygen
dc.subjectInorganic ions
dc.titleEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución