dc.contributorGrimaldo Guerrero, John William
dc.contributorSilva Ortega, Jorge Iván
dc.creatorJiménez Ríos, Carlos Mario
dc.date2021-10-22T13:23:47Z
dc.date2021-10-22T13:23:47Z
dc.date2020
dc.date.accessioned2023-10-03T19:02:41Z
dc.date.available2023-10-03T19:02:41Z
dc.identifierhttps://hdl.handle.net/11323/8797
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167084
dc.descriptionThe Colombian government's plan aims to strengthen the electric power sector through the implementation of the Advanced Measurement Infrastructure, the Automation of the distribution network, the Distributed Resources and the Electric Vehicles; All this entails a technological and economic challenge, due to the current conditions of the different Colombian municipalities, few will be able to face it. Based on this need, it is proposed to evaluate a business model to encourage the development of distributed generation projects, by supporting the network operator, as a strategic partner, in the activities of updating the electrical network and installation of generation systems with renewable energy. The operator of the electrical power network of the municipality of San José de Guaviare was taken as a case study; the results represent an attraction for the company that provides the public service; because they will be able to meet the goals proposed by the government, improve their indicators and the quality of service provision, without significantly impacting the economy of the population in the area of influence.
dc.descriptionEl plan del gobierno colombiano pretende fortalecer el sector energía eléctrica mediante la implementación de la Infraestructura de Medida Avanzada, la Automatización de la red de distribución, los Recursos distribuidos y los Vehículo Eléctrico; todo esto conllevan a un reto tecnológico y económico, debido a las condiciones actuales de los diferentes municipios colombianos, pocos podrán afrontar. A partir de esta necesidad se propone evaluar un modelo de negocio para incentivar el desarrollo de proyectos de generación distribuidas, mediante el apoyo al operador de red, como un socio estratégico, en las actividades de actualización de red eléctrica e instalación de sistemas de generación con energías renovables. Se tomó como caso de estudio el operador de la red de energía eléctrica del municipio de San José de Guaviare, los resultados representan un atractivo para la empresa prestadora del servicio público; porque podrán cumplir las metas propuestas por el gobierno, mejorar sus indicadores y la calidad de prestación de servicio, sin impactar de forma considerable la economía de la población de la zona de influencia.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherMaestría en Eficiencia Energética y Energías Renovables
dc.relationAbdelkafi, N., & Täuscher, K. (2016). Business Models for Sustainability From a System Dynamics Perspective. Organization & Environment, 29(1), 74–96. https://doi.org/10.1177/1086026615592930
dc.relationAshok, A., Hahn, A., & Govindarasu, M. (2014). Cyber-physical security of wide-area monitoring, protection and control in a smart grid environment. Journal of Advanced Research, 5(4), 481– 489. https://doi.org/10.1016/j.jare.2013.12.005
dc.relationBabadi, A. N., Nouri, S., & Khalaj, S. (2018). Challenges and opportunities of the integration of IoT and smart grid in Iran transmission power system. IEEE Proceedings 2017 Smart Grid Conference, SGC 2017, 2018-January, 1–6. https://doi.org/10.1109/SGC.2017.8308847
dc.relationBahmanyar, A., Jamali, S., Estebsari, A., Pons, E., Bompard, E., Patti, E., & Acquaviva, A. (2016). Emerging smart meters in electrical distribution systems: Opportunities and challenges. 2016 24th Iranian Conference on Electrical Engineering, ICEE 2016, 1082–1087. https://doi.org/10.1109/IranianCEE.2016.7585682
dc.relationBekara, C. (2014). Security issues and challenges for the IoT-based smart grid. Procedia Computer Science, 34, 532–537. https://doi.org/10.1016/j.procs.2014.07.064
dc.relationBelaïd, F., & Zrelli, M. H. (2019). Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries. Energy Policy, 133, 110929. https://doi.org/10.1016/j.enpol.2019.110929
dc.relationBoons, F., & Lüdeke-Freund, F. (2013). Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. Journal of Cleaner Production, 45, 9–19. https://doi.org/10.1016/j.jclepro.2012.07.007
dc.relationBugaje, I. M. (2006). Renewable energy for sustainable development in Africa: A review. In Renewable and Sustainable Energy Reviews (Vol. 10, Issue 6, pp. 603–612). Elsevier Ltd. https://doi.org/10.1016/j.rser.2004.11.002
dc.relationCELSIA. (2020). Cómo entender la tarifa de energía. https://www.celsia.com/Portals/0/Documentos/Documento sobre la tarifa de energía (final).pdf
dc.relationChen, Y. J., Chindarkar, N., & Xiao, Y. (2019). Effect of reliable electricity on health facilities, health information, and child and maternal health services utilization: evidence from rural Gujarat, India. Journal of Health, Population, and Nutrition, 38(1), 7. https://doi.org/10.1186/s41043- 019-0164-6
dc.relationLey 1715, (2014). http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html
dc.relationDANE. (2020). Estratificación socioeconómica. https://www.dane.gov.co/index.php/servicios-alciudadano/servicios-informacion/estratificacion-socioeconomica
dc.relationDecreto 2811, (1974). Resolución 00432, (2008). http://www.nuevalegislacion.com/files/susc/cdj/conc/r_dian_432_08.doc
dc.relationDNP. (2019). Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, Pacto por la Equidad. https://www.energycolombia.org/wp-content/uploads/1_DNP_AnaC_Ulloa_PND.pdf
dc.relationEducarchile. (2017). Energías Renovables. http://centroderecursos.educarchile.cl/bitstream/handle/20.500.12246/13709/articles25471_recurso_pdf.pdf?sequence=1
dc.relationEmbid, A., & Martín, L. (2013). El Nexo entre el agua, la energía y la alimentación en América Latina y el Caribe: planificación, marco normativo e identificación de interconexiones prioritarias. In CEPAL. https://repositorio.cepal.org/handle/11362/41069
dc.relationESSA. (2020). Conoce los costos del servicio de energía eléctrica. https://www.essa.com.co/site/blog/detalle-articulo/conoce-los-costos-del-servicio-deenerg237a-el233ctrica
dc.relationEvans, S., Vladimirova, D., Holgado, M., Van Fossen, K., Yang, M., Silva, E. A., & Barlow, C. Y. (2017). Business Model Innovation for Sustainability: Towards a Unified Perspective for Creation of Sustainable Business Models. Business Strategy and the Environment, 26(5), 597– 608. https://doi.org/10.1002/bse.1939
dc.relationFernández, J. (2017). Influencia de la integración de la generación renovable y gestión de la demanda en el mercado TESIS DOCTORAL. https://idus.us.es/handle/11441/56019
dc.relationFlórez, M., Gómez, B., & García, J. (2016). Análisis Comparativo de Diferentes Esquemas de Suficiencia en Generación Eléctrica: Algunas Reflexiones Para el Mercado Eléctrico en Colombia . Center for Research in Economics and Finance (CIEF), 16–18. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&as_ylo=2016&q=colombia+electricit y+market&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ACUNWOlSqngUJ%3Ascholar .google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Des
dc.relationFrança, C. L., Broman, G., Robèrt, K. H., Basile, G., & Trygg, L. (2017). An approach to business model innovation and design for strategic sustainable development. Journal of Cleaner Production, 140, 155–166. https://doi.org/10.1016/j.jclepro.2016.06.124
dc.relationGabriel, C. A., & Kirkwood, J. (2016). Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries. Energy Policy, 95, 336–349. https://doi.org/10.1016/j.enpol.2016.05.006
dc.relationGeissdoerfer, M., Bocken, N. M. P., & Hultink, E. J. (2016). Design thinking to enhance the sustainable business modelling process – A workshop based on a value mapping process. Journal of Cleaner Production, 135, 1218–1232. https://doi.org/10.1016/j.jclepro.2016.07.020
dc.relationGeissdoerfer, M., Vladimirova, D., & Evans, S. (2018). Sustainable business model innovation: A review. In Journal of Cleaner Production (Vol. 198, pp. 401–416). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.06.240
dc.relationGiaconi, G., Gunduz, D., & Poor, H. V. (2018). Privacy-Aware Smart Metering: Progress and Challenges. IEEE Signal Processing Magazine, 35(6), 59–78. https://doi.org/10.1109/MSP.2018.2841410
dc.relationGoogle Maps. (2021). San José Del Guaviare - Google Maps. https://www.google.com/maps/place/San+José+Del+Guaviare,+Guaviare/@2.5688351,- 72.6276988,6264m/data=!3m1!1e3!4m5!3m4!1s0x8e177699aa9e024d:0xa81b5573e08a8504! 8m2!3d2.5677606!4d-72.6396535?hl=es
dc.relationGrover, D., & Daniels, B. (2017). Social equity issues in the distribution of feed-in tariff policy benefits: A cross sectional analysis from England and Wales using spatial census and policy data. Energy Policy, 106, 255–265. https://doi.org/10.1016/j.enpol.2017.03.043
dc.relationHamwi, M., & Lizarralde, I. (2017). A Review of Business Models towards Service-Oriented Electricity Systems. Procedia CIRP, 64, 109–114. https://doi.org/10.1016/j.procir.2017.03.032
dc.relationHannon, M. (2012). Co-evolution of innovative business models and sustainability transitions: The case of the Energy Service Company (ESCo) model and the UK energy system [University of Leeds]. http://etheses.whiterose.ac.uk/3660/
dc.relationHannon, M. J., & Bolton, R. (2015). UK Local Authority engagement with the Energy Service Company (ESCo) model: Key characteristics, benefits, limitations and considerations. Energy Policy, 78, 198–212. https://doi.org/10.1016/j.enpol.2014.11.016
dc.relationHassan, M., Afridi, M. K., & Khan, M. I. (2018). An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan. Energy & Environment, 29(2), 184–203. https://doi.org/10.1177/0958305X17743036
dc.relationHernandez Callejo, L. (2014). Smart grid: evolución del sistema eléctrico.
dc.relationHernandez, J., Trujillo, C. L., & Santamaria, F. (2015, December 14). Photovoltaic projects developed in Non-Interconnected Zones in Colombia. 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. https://doi.org/10.1109/PVSC.2015.7356258
dc.relationHvelplund, F., & Djørup, S. (2017). Multilevel policies for radical transition: Governance for a 100% renewable energy system. Environment and Planning C: Politics and Space, 35(7), 1218– 1241. https://doi.org/10.1177/2399654417710024
dc.relationIGAC. (2021). Mapas Departamentales Físicos de Uso Escolar | GEOPORTAL. https://geoportal.igac.gov.co/contenido/mapas-departamentales-fisicos-de-uso-escolar
dc.relationKaur, R. R., & Luthra, A. (2018). Population growth, urbanization and electricity - Challenges and initiatives in the state of Punjab, India. Energy Strategy Reviews, 21, 50–61. https://doi.org/10.1016/j.esr.2018.04.005
dc.relationKaygusuz, K. (2011). Energy services and energy poverty for sustainable rural development. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 2, pp. 936–947). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.11.003
dc.relationKooijman-van Dijk, A. L., & Clancy, J. (2010). Impacts of Electricity Access to Rural Enterprises in Bolivia, Tanzania and Vietnam. Energy for Sustainable Development, 14(1), 14–21. https://doi.org/10.1016/j.esd.2009.12.004
dc.relationŁapniewska, Z. (2019). Energy, equality and sustainability? European electricity cooperatives from a gender perspective. Energy Research and Social Science, 57, 101247. https://doi.org/10.1016/j.erss.2019.101247
dc.relationLee, J., & Shepley, M. M. C. (2020). Benefits of solar photovoltaic systems for low-income families in social housing of Korea: Renewable energy applications as solutions to energy poverty. Journal of Building Engineering, 28, 101016. https://doi.org/10.1016/j.jobe.2019.101016
dc.relationLekavičius, V., Galinis, A., & Miškinis, V. (2019). Long-term economic impacts of energy development scenarios: The role of domestic electricity generation. Applied Energy, 253, 113527. https://doi.org/10.1016/j.apenergy.2019.113527
dc.relationLópez, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066
dc.relationLund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578–3587. https://doi.org/10.1016/j.enpol.2008.06.007
dc.relationMassa, L., Tucci, C. L., & Afuah, A. (2017). A critical assessment of business model research. In Academy of Management Annals (Vol. 11, Issue 1, pp. 73–104). Routledge. https://doi.org/10.5465/annals.2014.0072
dc.relationMME. (2018). Resolución 40072 del 2018. https://xperta.legis.co/visor/temp_legcol_932b0874-a198-4fbf-875a-74e6712accfb
dc.relationMontoya, M. (2018). Trends and challenges in electricity and oil regulation (Universidad Externado de Colombia (ed.)). https://books.google.es/books?hl=es&lr=&id=txpLDwAAQBAJ&oi=fnd&pg=PA107&dq=trend+and+challenges+in+electricity+and+oil+regulation&ots=D5AL9xKNhJ&sig=RIYQWY8rod-6WMaq4ZaETZp2iKw
dc.relationMuñoz, Y. A., Carrillo, E., Serrano, G., Carrillo, L. J., & Guerrero, J. E. (2017, July 10). Methodology for smart energy performance in rural zones of Colombia. 2017 Smart Cities Symposium
dc.relationPrague, SCSP 2017 - IEEE Proceedings. https://doi.org/10.1109/SCSP.2017.7973871
dc.relationOcampo Taborda, L. M. (2019). Estudio de prefactibilidad de un sistema solar fotovoltaico de 1 MW para generación de energía eléctrica. Universidad Autónoma de Occidente Facultad de Ingeniería.
dc.relationOlaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2016). How capacity mechanisms drive technology choice in power generation: The case of Colombia. In Renewable and Sustainable Energy Reviews (Vol. 56, pp. 563–571). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.11.065
dc.relationPérez Arango, S. (2018). Competencia minorista en el mercado de electricidad en Colombia: diagnóstico y recomendaciones basadas en experiencias internacionales. Universidad EAFIT. http://repository.eafit.edu.co/handle/10784/12912 Decreto 4955, (2011). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=45448#1
dc.relationPuentes, C. (2020). Recomendaciones para afrontar los impactos de las fuentes de energía renovables no convencionales sobre la transmisión de energía eléctrica en Colombia [Universidad Nacional Sede Medellín]. https://repositorio.unal.edu.co/handle/unal/77792
dc.relationRankia. (2020). ¿Cuál es la Tasa Efectiva Anual (%E.A) en Colombia? https://www.rankia.co/blog/mejores-creditos-y-prestamos-colombia/4268301-cual-tasaefectiva-anual-colombia
dc.relationRuiz, B. J., & Rodríguez-Padilla, V. (2006). Renewable energy sources in the Colombian energy policy, analysis and perspectives. Energy Policy, 34(18), 3684–3690. https://doi.org/10.1016/j.enpol.2005.08.007
dc.relationSalahuddin, M., Alam, K., Ozturk, I., & Sohag, K. (2018). The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 2002–2010). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.06.009
dc.relationSchaltegger, S., Hansen, E. G., & Lüdeke-Freund, F. (2016). Business Models for Sustainability: Origins, Present Research, and Future Avenues. Organization & Environment, 29(1), 3–10. https://doi.org/10.1177/1086026615599806
dc.relationShahid, A. (2018). Smart Grid Integration of Renewable Energy Systems. 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 944–948. https://doi.org/10.1109/ICRERA.2018.8566827
dc.relationShomali, A., & Pinkse, J. (2016). The consequences of smart grids for the business model of electricity firms. In Journal of Cleaner Production (Vol. 112, pp. 3830–3841). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2015.07.078
dc.relationSSPD. (2017). ZONAS NO INTERCONECTADAS-ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2017. www.superservicios.gov.co
dc.relationSuhonen, N., & Okkonen, L. (2013). The Energy Services Company (ESCo) as business model for heat entrepreneurship - A case study of North Karelia, Finland. Energy Policy, 61, 783–787. https://doi.org/10.1016/j.enpol.2013.06.047
dc.relationTéllez Gutiérrez, S. M., Rosero García, J., & Céspedes Gandarillas, R. (2018). Sistemas de medición avanzada en Colombia: beneficios, retos y oportunidades. Revista Científica Ingeniería y Desarrollo, 36(2), 469. https://doi.org/10.14482/inde.36.2.10711
dc.relationResolución 355, (2004). http://www.suinjuriscol.gov.co/viewDocument.asp?ruta=Resolucion/4047836
dc.relationUPME. (2015). Plan Energético Nacional - Colombia: Ideario Energético 2050. https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-Ideario-2050.aspx
dc.relationUPME. (2016). Smart Grids Colombia Visión 2030 | Parte I: Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia. http://www1.upme.gov.co/DemandaEnergetica/Smart Grids Colombia Visión 2030/1_Parte1_Proyecto_BID_Smart_Grids.pdf
dc.relationUpward, A., & Jones, P. (2016). An Ontology for Strongly Sustainable Business Models. Organization & Environment, 29(1), 97–123. https://doi.org/10.1177/1086026615592933
dc.relationVelásquez, B. (2015). Caracterización y análisis de la demanda de energía eléctrica en las ZNI del departamento de Nariño [Universidad de Nariño]. http://biblioteca.udenar.edu.co:8085/atenea/biblioteca/91297.pdf
dc.relationWells, P. (2013). Business models for sustainability. https://books.google.es/books?hl=es&lr=&id=mfEBAQAAQBAJ&oi=fnd&pg=PR1&dq=busi ness+models+for+sustainability+peter+wells&ots=oZ6JMLxHCt&sig=2xodVDzv0wzYoeNjz 74UMxK4uJU
dc.relationXu, X., Wei, Z., Ji, Q., Wang, C., & Gao, G. (2019). Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resources Policy, 63, 101470. https://doi.org/10.1016/j.resourpol.2019.101470
dc.relationYilmaz, M., & Krein, P. T. (2012). Review of benefits and challenges of vehicle-to-grid technology. 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012, 3082–3089. https://doi.org/10.1109/ECCE.2012.6342356
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectEnergy models
dc.subjectMarketing
dc.subjectRenewable energies
dc.subjectElectricity
dc.subjectModelos energéticos
dc.subjectComercialización
dc.subjectEnergías renovables
dc.subjectElectricidad
dc.titleModelo de negocio para el desarrollo de proyectos de generación distribuida
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución