dc.creatorHernández Fernández, Joaquín
dc.creatorCANO CUADRO, HEIDIS PATRICIA
dc.creatorRodriguez-Couto, Susana
dc.date2022-10-03T14:05:04Z
dc.date2022-10-03T14:05:04Z
dc.date2022-09-11
dc.date.accessioned2023-10-03T19:02:21Z
dc.date.available2023-10-03T19:02:21Z
dc.identifierHernández-Fernández, J.; Cano, H.; Rodríguez-Couto, S. Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability 2022, 14, 11402. https://doi.org/10.3390/su141811402
dc.identifierhttps://hdl.handle.net/11323/9556
dc.identifier10.3390/su141811402
dc.identifier2071-1050
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167017
dc.descriptionThe present research was focused on the determination and removal of sulfur-containing compounds in industrial emissions of liquefied petroleum gas purification processes in petrochemical plants located in the USA, Brazil, Colombia, Spain, and Italy. For the analysis of volatile sulfur compounds (VSCs), an improved analytical methodology was implemented. The performance of the method was evaluated for eight VSCs in a linear dynamic range between 0.1 and 50 ppm. The concentrations of the eight VSCs in the deethanizer affluents ranged from 11 to 49 ppm for all the studied plants, which exceed the limits specified by institutions and administrations in occupational health and safety. The concentrations of the eight VSCs in the splitter affluents were lower than 4 ppm for all the considered plants. The emissions from each column depended upon its operating rate, with the highest concentrations estimated at 45 TM kg−1 and the lowest ones at 25 TM kg−1. A zeolite-packed prototype column was fitted at the outlet of the splitter and deethanizer columns to reduce the environmental effect of the examined VSCs. This technique was verified and put into practice on an industrial scale, obtaining VSC removal percentages of between 85 and 91%.
dc.format18 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI AG
dc.publisherSwitzerland
dc.relationSustainability
dc.relation1. Kailasa, S.K.; Koduru, J.R.; Vikrant, K.; Tsang, Y.F.; Singhal, R.K.; Hussain, C.M.; Kim, K.-H. Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. J. Mol. Liq. 2020, 297, 111886. [CrossRef]
dc.relation2. An, T.; Wan, S.; Li, G.; Sun, L.; Guo, B. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J. Hazard. Mater. 2010, 183, 372–380. [CrossRef] [PubMed]
dc.relation3. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [CrossRef] [PubMed]
dc.relation4. Chen, Y.-M.; Lin, W.-Y.; Chan, C.-C. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: An 11-year longitudinal study. BMC Public Health 2014, 14, 247. [CrossRef]
dc.relation5. Broitman, D.; Portnov, B.A. Forecasting health effects potentially associated with the relocation of a major air pollution source. Environ. Res. 2020, 182, 109088. [CrossRef]
dc.relation6. Allison, E.; Mandler, B. Air Quality Impacts of Oil and Gas: Emissions from production, processing, refining, and use. In Petroleum and the Environment; American Geosciences Institute: Alexandria, VA, USA, 2018; Volume 18, pp. 1–18.
dc.relation7. Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [CrossRef]
dc.relation8. Vellingiri, K.; Kim, K.-H.; Kwon, E.E.; Deep, A.; Jo, S.-H.; Szulejko, J.E. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels. J. Environ. Manag. 2016, 166, 484–492. [CrossRef]
dc.relation9. Nagata, E.; Yoshio, Y. Measurement of odor threshold by triangle odor bag method. Odor Meas. Minist. Environ. Sci. 2003, 118, 118–127.
dc.relation10. ATSDR. Toxicological Profile for Hydrogen Sulfide; ATSDR: Atlanta, GA, USA, 2006.
dc.relation11. Bergmann, S.; Li, B.; Pilot, E.; Chen, R.; Wang, B.; Yang, J. Effect modification of the short-term effects of air pollution on morbidity by season: A systematic review and meta-analysis. Sci. Total Environ. 2020, 716, 136985. [CrossRef]
dc.relation12. Chen, G.; Koros, W.J.; Jones, C.W. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. ACS Appl. Mater. Interfaces 2016, 8, 9700–9709. [CrossRef]
dc.relation13. Xu, X.; Cho, S.I.; Sammel, M.; You, L.; Cui, S.; Huang, Y.; Ma, G.; Padungtod, C.; Pothier, L.; Niu, T.; et al. Association of petrochemical exposure with spontaneous abortion. Occup. Environ. Med. 1998, 55, 31–36. [CrossRef]
dc.relation14. Camargo, R.Y.A.; Tomimori, E.K.; Neves, S.C.; Knobel, M.; Medeiros-Neto, G. Prevalence of chronic autoimmune thyroiditis in the urban area neighboring a petrochemical complex and a control area in Sao Paulo, Brazil. Clinics 2006, 61, 307–312. [CrossRef]
dc.relation15. White, N.; teWaterNaude, J.; Van Der Walt, A.; Ravenscroft, G.; Roberts, W.; Ehrlich, R. Meteorologically estimated exposure but not distance predicts asthma symptoms in schoolchildren in the environs of a petrochemical refinery: A cross-sectional study. Environ. Health 2009, 8, 45. [CrossRef]
dc.relation16. De Moraes, A.C.L.; Ignotti, E.; Netto, P.A.; Jacobson, L.D.S.V.; Castro, H.; Hacon, S.D.S. Wheezing in children and adolescents living next to a petrochemical plant in Rio Grande do Norte, Brazil. J. Pediatr. 2010, 86, 337–344. [CrossRef]
dc.relation17. Rusconi, F.; Catelan, D.; Accetta, G.; Peluso, M.; Pistelli, R.; Barbone, F.; Di Felice, E.; Munnia, A.; Murgia, P.; Paladini, L.; et al. Asthma Symptoms, Lung Function, and Markers of Oxidative Stress and Inflammation in Children Exposed to Oil Refinery Pollution. J. Asthma 2011, 48, 84–90. [CrossRef]
dc.relation18. Rovira, E.; Cuadras, A.; Aguilar, X.; Esteban, L.; Borràs-Santos, A.; Zock, J.-P.; Sunyer, J. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ. Res. 2014, 133, 156–163. [CrossRef]
dc.relation19. Barbone, F.; Catelan, D.; Pistelli, R.; Accetta, G.; Grechi, D.; Rusconi, F.; Biggeri, A. A Panel Study on Lung Function and Bronchial Inflammation among Children Exposed to Ambient SO2 from an Oil Refinery. Int. J. Environ. Res. Public Health 2019, 16, 1057. [CrossRef]
dc.relation20. Chung, H.; Youn, K.; Kim, K.; Park, K. Carbon disulfide exposure estimate and prevalence of chronic diseases after carbon disulfide poisoning-related occupational diseases. Ann. Occup. Environ. Med. 2017, 29, 52. [CrossRef]
dc.relation21. Liu, S.; Ni, J.-Q.; Radcliffe, J.S.; Vonderohe, C. Hydrogen sulfide emissions from a swine building affected by dietary crude protein. J. Environ. Manag. 2017, 204, 136–143. [CrossRef]
dc.relation22. Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [CrossRef]
dc.relation23. Sedighi, M.; Vahabzadeh, F.; Zamir, S.M.; Naderifar, A. Ethanethiol degradation by Ralstonia eutropha. Biotechnol. Bioprocess Eng. 2013, 18, 827–833. [CrossRef]
dc.relation24. Gholampour, F.; Yeganegi, S. Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon. Chem. Eng. Sci. 2014, 117, 426–435. [CrossRef]
dc.relation25. Fellah, M.F. Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters. Fuel Process. Technol. 2016, 144, 191–196. [CrossRef]
dc.relation26. Feng, Z.; Song, X.; Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 2008, 56, 1630–1636. [CrossRef]
dc.relation27. Berrouk, A.S.; Ochieng, R. Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation. Fuel Process. Technol. 2014, 127, 20–25. [CrossRef]
dc.relation28. Liu, X.; Li, J.; Wang, R. Study on the desulfurization performance of hydramine/ionic liquid solutions at room temperature and atmospheric pressure. Fuel Process. Technol. 2017, 167, 382–387. [CrossRef]
dc.relation29. Rufford, T.; Smart, S.; Watson, G.; Graham, B.; Boxall, J.; da Costa, J.D.; May, E. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94–95, 123–154. [CrossRef]
dc.relation30. Satokawa, S.; Kobayashi, Y.; Fujiki, H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Appl. Catal. B Environ. 2005, 56, 51–56. [CrossRef]
dc.relation31. Wakita, H.; Tachibana, Y.; Hosaka, M. Removal of dimethyl sulfide and t-butylmercaptan from city gas by adsorption on zeolites. Microporous Mesoporous Mater. 2001, 46, 237–247. [CrossRef]
dc.relation32. Zhu, L.; Lv, X.; Tong, S.; Zhang, T.; Song, Y.; Wang, Y.; Hao, Z.; Huang, C.; Xia, D. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. J. Nat. Gas Sci. Eng. 2019, 69, 102941. [CrossRef]
dc.relation33. Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollut. Res. 2021, 12, 167–176. [CrossRef]
dc.relation34. Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef] [PubMed]
dc.relation35. Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]
dc.relation36. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef] [PubMed]
dc.relation37. Alladio, E.; Amante, E.; Bozzolino, C.; Seganti, F.; Salomone, A.; Vincenti, M.; Desharnais, B. Effective validation of chromatographic analytical methods: The illustrative case of androgenic steroids. Talanta 2020, 215, 120867. [CrossRef]
dc.relation38. Sedighi, M.; Zamir, S.M.; Vahabzadeh, F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. J. Environ. Manag. 2016, 165, 53–61. [CrossRef]
dc.relation39. Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [CrossRef]
dc.relation40. ATSDR. Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide; ATSDR: Atlanta, GA, USA, 2016.
dc.relation41. Malone, S. Cyanide and Hydrogen Sulfide: A Review of Two Blood Gases, Their Environmental Sources, and Potential Risks; University of Pittsburgh: Pittsburgh, PA, USA, 2016.
dc.relation42. Yang, D.; Chen, G.; Zhang, R. Estimated Public Health Exposure to H2S Emissions from a Sour Gas Well Blowout in Kaixian County, China. Aerosol Air Qual. Res. 2006, 6, 430–443. [CrossRef]
dc.relation43. Montzka, S.A.; Calvert, P.; Hall, B.D.; Elkins, J.W.; Conway, T.J.; Tans, P.P.; Sweeney, C. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2 . J. Geophys. Res. Earth Surf. 2007, 112. [CrossRef]
dc.relation44. Sciare, J.; Mihalopoulos, N.; Nguyen, B. Spatial and temporal variability of dissolved sulfur compounds in European estuaries. Biogeochemistry 2002, 59, 121–141. [CrossRef]
dc.relation45. Mallik, C.; Chandra, N.; Venkataramani, S.; Lal, S. Variability of atmospheric carbonyl sulfide at a semi-arid urban site in western India. Sci. Total Environ. 2016, 551–552, 725–737. [CrossRef]
dc.relation46. Göen, T.; Schramm, A.; Baumeister, T.; Uter, W.; Drexler, H. Current and historical individual data about exposure of workers in the rayon industry to carbon disulfide and their validity in calculating the cumulative dose. Int. Arch. Occup. Environ. Health 2014, 87, 675–683. [CrossRef]
dc.relation47. Vanhoorne, M.H.; Ceulemans, L.; De Bacquer, D.A.; De Smet, F.P. An Epidemiologic Study of the Effects of Carbon Disulfide on the Peripheral Nerves. Int. J. Occup. Environ. Health 1995, 1, 295–302. [CrossRef]
dc.relation48. Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Goldberg, L.; McKenna, M.J. A Critical Review of the Literature on Carbon Disulfide Toxicity. CRC Crit. Rev. Toxicol. 1983, 11, 169–278. [CrossRef]
dc.relation49. Newhook, R.; Meek, M.E. Carbon Disulfide; WHO: Geneva, Switzerland, 2002.
dc.relation50. Llorens, J. Toxic neurofilamentous axonopathies—Accumulation of neurofilaments and axonal degeneration. J. Intern. Med. 2013, 273, 478–489. [CrossRef]
dc.relation51. Takebayashi, T.; Omae, K.; Ishizuka, C.; Nomiyama, T.; Sakurai, H. Cross sectional observation of the effects of carbon disulphide on the nervous system, endocrine system, and subjective symptoms in rayon manufacturing workers. Occup. Environ. Med. 1998,55, 473–479. [CrossRef]
dc.relation52. Johnson, B.L.; Boyd, J.; Burg, J.R.; Lee, S.T.; Xintaras, C.; Albright, B.E. Effects on the peripheral nervous system of workers’ exposure to carbon disulfide. Neurotoxicology 1983, 4, 53–65.
dc.relation53. Hirata, M.; Ogawa, Y.; Goto, S. A cross-sectional study on nerve conduction velocities among workers exposed to carbon disulphide. La Medicina del Lavoro 1996, 87, 29–34.
dc.relation54. Kotseva, K.; Braeckman, L.; De Bacquer, D.; Bulat, P.; Vanhoorne, M. Cardiovascular Effects in Viscose Rayon Workers Exposed to Carbon Disulfide. Int. J. Occup. Environ. Health 2001, 7, 7–13. [CrossRef]
dc.relation55. Hernberg, S.; Partanen, T.; Nordman, C.-H.; Sumari, P. Coronary heart disease among workers exposed to carbon disulphide. Occup. Environ. Med. 1970, 27, 313–325. [CrossRef]
dc.relation56. Sulsky, S.I.; Hooven, F.H.; Burch, M.T.; Mundt, K.A. Critical review of the epidemiological literature on the potential cardiovascular effects of occupational carbon disulfide exposure. Int. Arch. Occup. Environ. Health 2002, 75, 365–380. [CrossRef]
dc.relation57. Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control Assoc. 1969, 19, 91–95. [CrossRef]
dc.relation58. Wilby, F.V. Variation in Recognition Odor Threshold of a Panel. J. Air Pollut. Control Assoc. 1969, 19, 96–100. [CrossRef]
dc.relation59. ACGIH. TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2015; p. 42. Available online: http://www.acgih.org/forms/store/ ProductFormPublic/2015-tlvs-and-beis (accessed on 28 February 2022).
dc.relation60. Fang, J.-J.; Yang, N.; Cen, D.-Y.; Shao, L.-M.; He, P.-J. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [CrossRef]
dc.relation61. Fang, J.; Xu, X.; Jiang, L.; Qiao, J.; Zhou, H.; Li, K. Preliminary results of toxicity studies in rats following low-dose and short-term exposure to methyl mercaptan. Toxicol. Rep. 2019, 6, 431–438. [CrossRef]
dc.relation62. Shults, W.T.; Fountain, E.N.; Lynch, E.C. Methanethiol Poisoning. JAMA 1970, 211, 2153–2154. [CrossRef]
dc.relation63. Zieve, L.; Doizaki, W.M.; Zieve, J. Synergism between mercaptans and ammonia or fatty acids in the production of coma: A possible role for mercaptans in the pathogenesis of hepatic coma. J. Lab. Clin. Med. 1974, 83, 16–28.
dc.relation18
dc.relation1
dc.relation18
dc.relation14
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2071-1050/14/18/11402
dc.subjectIndustrial emissions
dc.subjectLiquefied petroleum gas purification
dc.subjectZeolite
dc.subjectSulfide
dc.subjectThiols
dc.subjectGC-MS
dc.titleQuantification and removal of volatile sulfur compounds (VSCS) in atmospheric emissions in large (Petro) chemical complexes in different countries of America and Europe
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.coverageAmérica
dc.coverageEurope


Este ítem pertenece a la siguiente institución