dc.creatorAkinyemi, Segun Ajayi
dc.creatorHower, James C.
dc.creatorMadukwe, Henry
dc.creatorNyakuma, Bemgba Bevan
dc.creatorNasirudeen, Mohammed B.
dc.creatorOlanipekun, Timileyin
dc.creatorMudzielwana, Rabelani
dc.creatorGitari, Mugera Wilson
dc.creatorSilva, Luis F. O
dc.date2022-07-22T14:00:00Z
dc.date2022-07-22T14:00:00Z
dc.date2022
dc.date.accessioned2023-10-03T19:02:20Z
dc.date.available2023-10-03T19:02:20Z
dc.identifierSegun A. Akinyemi, James C. Hower, Henry Y. Madukwe, Bemgba B. Nyakuma, Mohammed B. Nasirudeen, Timileyin A. Olanipekun, Rabelani Mudzielwana, Mugera W. Gitari, Luis F.O. Silva, Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments, Energy Geoscience, Volume 3, Issue 3, 2022, Pages 300-313, ISSN 2666-7592, https://doi.org/10.1016/j.engeos.2022.04.004.
dc.identifier2666-7592
dc.identifierhttps://hdl.handle.net/11323/9398
dc.identifierhttps://doi.org/10.1016/j.engeos.2022.04.004.
dc.identifier10.1016/j.engeos.2022.04.004.
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167013
dc.descriptionThe Benue Trough Basin (BTB) of Nigeria is geologically and geo-morphologically subdivided into upper, middle, and lower segments. The BTB is the subject of geological research due to its rich coal deposits that have the potential for oil and gas. The purpose of the present study is to examine the origins, depositional environments, and thermal history of the selected coals and the processes that influence their quality. Coal samples from different open cast coal mines in the middle BTB were examined using proximate and ultimate, x-ray diffraction (XRD), x-ray fluorescence (XRF), laser ablation induced coupled plasma (LA-ICPMS), and petrographical analyses. The coal samples contained mainly quartz, kaolinite, and organic carbon. The XRD spectra peaks revealed the triclinic and monoclinic structure of kaolin. The SiO2/Al2O3 ratios confirmed the dominance of quartz and kaolinite. The Ni/Co versus V/Cr, Cu/Zn, and V/Mo values in the studied coals suggest oxic depositional environments, whereas the V/(Ni + V) and V/(V + Cr) values indicate oxic to suboxic conditions. The Ce/Ce∗ values are slightly below 1, which indicates a suboxic depositional environment. Maceral texture is indicative of transformations from sub-bituminous to high volatile C or B bituminous coal. The maceral components and mineral matter (≥10%) of the studied coals imply deposition in the planar margin mire, and a river system of planar margin mire environments, respectively. The high gelification index (GI) and tissue preservation index (TPI) values indicate peat accumulation developed within a wet forest swamp. The ternary diagram of the maceral component suggests deposition in a wet moor environment with intermittent moderate to high flooding episodes. The studied coals are sub-hydrous vitrinite inferring hydrogen-poor and thermally immature characteristics. The low V and Ni contents, low H/C and high O/C, indicate Type Ⅲ terrestrial organic matter with the potential to generate gaseous hydrocarbons. The investigated coals were deposited by the river within telmatic, limnic, and limno-telmatic zones in the planar margin mire depositional environments. Overall, the integrated petrologic and geochemical data used in this study provides a reliable approach for the assessment of coal depositional environments.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier B.V. on behalf of KeAi Communications Co. Ltd
dc.publisherChina
dc.relationEnergy Geoscience
dc.relationAdedosu et al., 2010 T. Adedosu, O. Sonibare, O. Ekundayo, J. Tuo Hydrocarbon-generative potential of coal and interbedded shale of Mamu formation, Benue Trough, Nigeria Petrol. Sci. Technol., 28 (4) (2010), pp. 412-427
dc.relationAdighije, 1979 C. Adighije Gravity field of Benue trough, Nigeria Nature, 282 (5735) (1979), pp. 199-201
dc.relationAihua, 1996 W. Aihua Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms Acta Sedimentol. Sin., 4 (1996)
dc.relationAkinlua et al., 2015 A. Akinlua, A. Sigedle, T. Buthelezi, O. Fadipe Trace element geochemistry of crude oils and condensates from South African Basins Mar. Petrol. Geol., 59 (2015), pp. 286-293
dc.relationAkinyemi et al., 2012 S. Akinyemi, W. Gitari, A. Akinlua, L. Petrik Mineralogy and Geochemistry of Sub-bituminous Coal and its Combustion Products from Mpumalanga Province, South Africa Analyt.Chem. InTech (2012)
dc.relationAkinyemi et al., 2021 S.A. Akinyemi, B.B. Nyakuma, A. Jauro, T.A. Olanipekun, R. Mudzielwana, M.W. Gitari, B.K. Saikia, G.L. Dotto, J.C. Hower, L.F. Silva Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: modes of occurrence for greater sustainability of mining Fuel, 304 (2021), Article 121468
dc.relationAkinyemi et al., 2022 S.A. Akinyemi, O.F. Adebayo, H.Y. Madukwe, A.T. Kayode, A.O. Aturamu, O.A. OlaOlorun, B.B. Nyakuma, A. Jauro, W.M. Gitari, R. Mudzielwana, J.C. Hower Elemental geochemistry and organic facies of selected cretaceous coals from the Benue Trough basin in Nigeria: implication for paleodepositional environments Mar. Petrol. Geol., 137 (2022), Article 105490
dc.relationAlves and Ade, 1996 R. Alves, M. Ade Sequence stratigraphy and coal petrography applied to the Candiota Coal Field, Rio Grande do Sul, Brazil: A depositional model Int. J. Coal Geol., 30 (3) (1996), pp. 231-248
dc.relationAmeh, 2019 E.G. Ameh Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria Int J Coal Sci Technol, 6 (2) (2019), pp. 260-273
dc.relationArbuzov et al., 2019 S. Arbuzov, I.Y. Chekryzhov, R. Finkelman, Y. Sun, C. Zhao, S. Il'enok, M. Blokhin, N. Zarubina Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of North Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan) Int. J. Coal Geol., 206 (2019), pp. 106-120
dc.relationASTM D2013/D2013M-12, 2012 ASTM D2013/D2013M-12 Standard Practice for Preparing Coal Samples for Analysis ASTM International, West Conshohocken, PA, USA (2012)
dc.relationASTM D3176-15, 2015 ASTM D3176-15 Standard Practice for Ultimate Analysis of Coal and Coke ASTM International, West Conshohocken, PA, USA (2015)
dc.relationASTM D4239-12, 2012 ASTM D4239-12 Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion ASTM International, West Conshohocken, PA, USA (2012)
dc.relationASTM D7582-12, 2012 ASTM D7582-12 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis ASTM International, West Conshohocken, PA, USA (2012)
dc.relationAyinla et al., 2017 H.A. Ayinla, W.H. Abdullah, Y.M. Makeen, M. Abubakar, A. Jauro, B.M.S. Yandoka, K.A. Mustapha, N.S.Z. Abidin Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic-rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria Int. J. Coal Geol., 173 (2017), pp. 212-226
dc.relationBarwise, 1990 A. Barwise Role of nickel and vanadium in petroleum classification Energy Fuels, 4 (6) (1990), pp. 647-652
dc.relationBau, 1996 M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect Contrib. Mineral. Petrol., 123 (3) (1996), pp. 323-333
dc.relationBurger et al., 2000 K. Burger, F.K. Bandelow, G. Bieg Pyroclastic kaolin coal–tonsteins of the upper carboniferous of zonguldak and amasra, Turkey Int. J. Coal Geol., 45 (1) (2000), pp. 39-53
dc.relationCalder et al., 1991 J. Calder, M. Gibling, P.K. Mukhopadhyay Peat Formation in a Westphalian B Piedmont Setting, Cumberland Basin, Nova Scotia: Implicatio
dc.relationClemens et al., 2000 A. Clemens, J. Deely, D. Gong, T. Moore, J. Shearer Partitioning behaviour of some toxic trace elements during coal combustion—the influence of events occurring during the deposition stage Fuel, 79 (14) (2000), pp. 1781-1784
dc.relationCornelissen et al., 2004 G. Cornelissen, Z. Kukulska, S. Kalaitzidis, K. Christanis, Ö. Gustafsson Relations between environmental black carbon sorption and geochemical sorbent characteristics Environ. Sci. Technol., 38 (13) (2004), pp. 3632-3640
dc.relationCornford, 1979 C. Cornford Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP Site 397, Eastern North Atlantic U. von Rad, W.B.F. Ryan, et al. (Eds.), Init. Repts. DSDP, 47 (Pt. 1), U.S. Govt. Printing Office, Washington (1979), pp. 503-510
dc.relationS.S. Crowley, R.W. Stanton, T.A. Ryer The effects of volcanic ash on the maceral and chemical composition of the C coal bed Emery Coal Field, Utah. Org. Geochem., 14 (3) (1989), pp. 315-331
dc.relationDai et al., 2020 S. Dai, A. Bechtel, C.F. Eble, R.M. Flores, D. French, I.T. Graham, M.M. Hood, J.C. Hower, V.A. Korasidis, T.A. Moore Recognition of peat depositional environments in coal: a review Int. J. Coal Geol., 219 (2020), Article 103383
dc.relationDai and Finkelman, 2018 S. Dai, R.B. Finkelman Coal as a promising source of critical elements: progress and future prospects Int. J. Coal Geol., 186 (2018), pp. 155-164
dc.relationDai et al., 2015 S. Dai, J. Liu, C.R. Ward, J.C. Hower, P. Xie, Y. Jiang, M.M. Hood, J.M. O'Keefe, H. Song Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: a comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit Ore Geol. Rev., 71 (2015), pp. 318-349
dc.relationDai et al., 2012a S. Dai, D. Ren, C.-L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization Int. J. Coal Geol., 94 (2012), pp. 3-21
dc.relationDai et al., 2012b S. Dai, X. Wang, V.V. Seredin, J.C. Hower, C.R. Ward, J.M. O'Keefe, W. Huang, T. Li, X. Li, H. Liu Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications Int. J. Coal Geol., 90 (2012), pp. 72-99
dc.relationDeng and Qian, 1993 H. Deng, K. Qian Analysis on Sedimentary Geochemistry and Environment Gansu Science and Technology Publishing House, Lanzhou, Lanzhou, PR China (1993)
dc.relationDiessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22
dc.relationDiessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261
dc.relationDing et al., 2009 S.-l. Ding, Q.-f. Liu, M.-Z. Wang Study of kaolinite rock in coal-bearing stratum, North China Procedia Earth Planet, 1 (1) (2009), pp. 1024-1028
dc.relationEl Atfy et al., 2014 H. El Atfy, R. Brocke, D. Uhl, B. Ghassal, A.T. Stock, R. Littke Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: an integrated palynofacies and organic geochemical approach Int. J. Coal Geol., 131 (2014), pp. 326-343
dc.relationFarhaduzzaman et al., 2012 M. Farhaduzzaman, W.H. Abdullah, M.A. Islam Depositional environment and hydrocarbon source potential of the permian Gondwana coals from the Barapukuria basin, northwest Bangladesh Int. J. Coal Geol., 90 (2012), pp. 162-179
dc.relationFatoye and Gideon, 2013 F.B. Fatoye, Y.B. Gideon Appraisal of the economic geology of Nigerian coal resources Environ. Earth Sci., 3 (11) (2013), pp. 25-31
dc.relationFinkelman et al., 1999 R.B. Finkelman, H.E. Belkin, B. Zheng Health impacts of domestic coal use in China PNAS, 96 (7) (1999), pp. 3427-3431
dc.relationFinkelman et al., 2019 R.B. Finkelman, S. Dai, D. French The importance of minerals in coal as the hosts of chemical elements: a review Int. J. Coal Geol., 212 (2019), Article 103251
dc.relationFlores, 2014 R.M. Flores Coalification, gasification, and gas storage Coal and coalbed gas (2014), pp. 167-233
dc.relationGalarraga et al., 2008 F. Galarraga, K. Reategui, A. Martïnez, M. Martínez, J. Llamas, G. Márquez V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins J. Pet. Sci. Eng., 61 (1) (2008), pp. 9-14
dc.relationGallego-Torres et al., 2010 D. Gallego-Torres, F. Martinez-Ruiz, G. De Lange, F. Jimenez-Espejo, M. Ortega-Huertas Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels Palaeogeogr. Palaeoclimatol. Palaeoecol., 293 (1–2) (2010), pp. 76-89
dc.relationGómez Neita and López Carrasquilla, 2017 J.S. Gómez Neita, M.D. López Carrasquilla Paleoenvironments of coals using organic petrography and their relationship with physicochemical properties, guaduas formation, Checua-Lenguazaque syncline, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso (2017), pp. 1-106
dc.relationHallberg, 1976 R. Hallberg A geochemical method for investigation of palaeoredox conditions in sediments Ambio Spec. Rep., 4 (1976), pp. 139-147
dc.relationHatch and Leventhal, 1992 J. Hatch, J. Leventhal Relationship between inferred redox potential of the depositional environment and geochemistry of the upper pennsylvanian (Missourian) Stark shale Member of the Dennis limestone, Wabaunsee county, Kansas, USA Chem. Geol., 99 (1–3) (1992), pp. 65-82
dc.relationHendrix et al., 1995 M.S. Hendrix, S.C. Brassell, A.R. Carroll, S.A. Graham Sedimentology, organic geochemistry, and petroleum potential of Jurassic coal measures: Tarim, Junggar, and Turpan basins, northwest China AAPG Bull., 79 (7) (1995), pp. 929-958
dc.relationHetzel et al., 2009 A. Hetzel, M.E. Böttcher, U.G. Wortmann, H.-J. Brumsack Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207) Palaeogeogr. Palaeoclimatol. Palaeoecol., 273 (3–4) (2009), pp. 302-328
dc.relationHorsfield et al., 1988 B. Horsfield, K. Yordy, J. Crelling Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology Org. Geochem., 13 (1988), pp. 121-129
dc.relationHower et al., 2020 J.C. Hower, C.F. Eble, J.S. Backus, P. Xie, J. Liu, B. Fu, M.M. Hood Aspects of rare earth element enrichment in Central Appalachian coals J. Appl. Geochem., 120 (2020), Article 104676
dc.relationHower et al., 2016 J.C. Hower, C.F. Eble, S. Dai, H.E. Belkin Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment? Int. J. Coal Geol., 160 (2016), pp. 73-81
dc.relationHower et al., 2015 J.C. Hower, C.F. Eble, J.M. O'Keefe, S. Dai, P. Wang, P. Xie, J. Liu, C.R. Ward, D. French Petrology, palynology, and geochemistry of gray hawk coal (early Pennsylvanian, Langsettian) in eastern Kentucky, USA Minerals, 5 (3) (2015), pp. 592-622
dc.relationHower et al., 1999 J.C. Hower, L.F. Ruppert, C.F. Eble Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky Int. J. Coal Geol., 39 (1–3) (1999), pp. 141-153
dc.relationHunt, 1991 J.M. Hunt Generation of gas and oil from coal and other terrestrial organic matter Org. Geochem., 17 (6) (1991), pp. 673-680
dc.relationICCP, 1998 ICCP The new vitrinite classification (ICCP System 1994) Fuel, 77 (5) (1998), pp. 349-358
dc.relationICCP, 2001 ICCP The new inertinite classification (ICCP System 1994) Fuel, 80 (4) (2001), pp. 459-471
dc.relationIslam et al., 2021 N. Islam, S. Shahadev Rabha, K.S.V. Subramanyam, B.K. Saikia Geochemistry and mineralogy of coal mine overburden (waste): a study towards their environmental implications Chemosphere, 274 (2021), Article 129736
dc.relationJochum et al., 2005 K.P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hofmann GeoReM: a new geochemical database for reference materials and isotopic standards Geostand. Geoanal. Res., 29 (3) (2005), pp. 333-338
dc.relationJochum et al., 2016 K.P. Jochum, U. Weis, B. Schwager, B. Stoll, S.A. Wilson, G.H. Haug, M.O. Andreae, J. Enzweiler Reference values following ISO guidelines for frequently requested rock reference materials Geostand. Geoanal. Res., 40 (3) (2016), pp. 333-350
dc.relationJones and Manning, 1994 B. Jones, D.A. Manning Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones Chem. Geol., 111 (1–4) (1994), pp. 111-129
dc.relationKalkreuth, 1982 W. Kalkreuth Rank and petrographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia, Canada Bull. Can. Petrol. Geol., 30 (2) (1982), pp. 112-139
dc.relationKeller et al., 2016 B.D. Keller, N. Ferralis, J.C. Grossman Rethinking coal: Thin films of solution processed natural carbon nanoparticles for electronic devices Nano Lett., 16 (5) (2016), pp. 2951-2957
dc.relationKetris and Yudovich, 2009 M.á. Ketris, Y.E. Yudovich Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals Int. J. Coal Geol., 78 (2) (2009), pp. 135-148
dc.relationKogbe, 1976 C. Kogbe Paleogeographic History of Nigeria from Albian Times Geology of Nig. Elizabeth Publishers, Lagos (1976), pp. 237-252
dc.relationKostova et al., 2016 I. Kostova, C. Vassileva, S. Dai, J.C. Hower Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria Fuel, 186 (2016), pp. 674-684
dc.relationDiessel, 1982 C. Diessel An appraisal of coal facies based on maceral characteristics Aust. Coal Geol., 4 (2) (1982), pp. 474-484 Diessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22 Google Scholar Diessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261
dc.relationLewan, 1984 M.D. Lewan Factors controlling the proportionality of vanadium to nickel in crude oils Geochem. Cosmochim. Acta, 48 (11) (1984), pp. 2231-2238
dc.relationLiu et al., 2020 B. Liu, C. Zhao, J. Fiebig, A. Bechtel, Y. Sun, W. Püttmann Stable isotopic and elemental characteristics of pale and dark layers in a late Pliocene lignite deposit basin in Yunnan Province, southwestern China: implications for paleoenvironmental changes Int. J. Coal Geol., 226 (2020), Article 103498
dc.relationLittle, 2015 K.R. Little Commercial Lignite Coal-Derived Amendments for Improved Pasture Growth and Soil Health Monash University (2015)
dc.relationLiu et al., 1984 Y. Liu, L. Cao, Z. Li, H. Wang, T. Chu, J. Zhang Element Geochemistry Science and Technology Press, Bejing (1984) ([in Chinese])
dc.relationMastalerz et al., 2000 M. Mastalerz, P.L. Padgett, C.F. Eble Block coals from Indiana: inferences on changing depositional environment Int. J. Coal Geol., 43 (1–4) (2000), pp. 211-226
dc.relationMcDaniel et al., 1994 D. McDaniel, S. Hemming, S. McLennan, G. Hanson Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: the early proterozoic chelmsford formation, Sudbury basin, Ontario, Canada Geochem. Cosmochim. Acta, 58 (2) (1994), pp. 931-941
dc.relationMilodowski and Zalasiewicz, 1991 A. Milodowski, J. Zalasiewicz Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales Geol. Soc. Lond. Spec. Publ., 57 (1) (1991), pp. 101-124
dc.relationMisiak, 2002 J. Misiak Środowiska Depozycji Materii Organicznej W Torfowiskach Karbońskich. Materiały XXV Sympozjum „Geologia Formacji Węglonośnych Polski AGH, Kraków (2002), pp. 105-108
dc.relationMisiak, 2003 J. Misiak Projekt Diagramu Do Analizy Facjalnej Pokładów Węgla Kamiennego. Mat. XXIV Symp. Nt. Geologia Formacji Węglonośnych Polski Wyd. AGH, Kraków (2003)
dc.relationMisiak, 2006 J. Misiak Petrography and depositional environment of the No. 308 coal seam (Upper Silesian Coal Basin, Poland)—a new approach to maceral quantification and facies analysis Int. J. Coal Geol., 68 (1–2) (2006), pp. 117-126
dc.relationMisz-Kennan and Fabiańska, 2011 M. Misz-Kennan, M.J. Fabiańska Application of organic petrology and geochemistry to coal waste studies Int. J. Coal Geol., 88 (1) (2011), pp. 1-23
dc.relationMoore, 2012 T.A. Moore Coalbed methane: a review Int. J. Coal Geol., 101 (2012), pp. 36-81
dc.relationMukhopadhyay et al., 1991 P. Mukhopadhyay, P. Hatcher, J. Calder Hydrocarbon generation from deltaic and intermontane fluviodeltaic coal and coaly shale from the Tertiary of Texas and Carboniferous of Nova Scotia Org. Geochem., 17 (6) (1991), pp. 765-783
dc.relationMukhopadhyay and Hatcher, 1993 P.K. Mukhopadhyay, P.G. Hatcher Composition of coal B.a.R. Law, DD (Eds.), Hydrocarbons from Coal, American Association of Petroleum Geologists Studies in Geology, USA (1993), pp. 79-118
dc.relationNyakuma et al., 2018 B. Nyakuma, A. Jauro, O. Oladokun, A. Bello, H. Alkali, M. Modibo, M. Abba Physicochemical, mineralogical, and thermogravimetric properties of newly discovered Nigerian coals Pet. & Coal, 60 (4) (2018), pp. 641-649
dc.relationNyakuma and Jauro, 2016 B.B. Nyakuma, A. Jauro Chemical and pyrolytic thermogravimetric characterization of Nigerian bituminous coals Geo. Sci. Eng., 62 (3) (2016), pp. 1-5
dc.relationN. Obaje, B. Ligouis Petrographic evaluation of the depositional environments of the Cretaceous Obi/Lafia coal deposits in the Benue Trough of Nigeria J. Afr. Earth Sci., 22 (2) (1996), pp. 159-171
dc.relationObaje et al., 1994 N. Obaje, B. Ligouis, S. Abaa Petrographic composition and depositional environments of Cretaceous coals and coal measures in the Middle Benue Trough of Nigeria Int. J. Coal Geol., 26 (3–4) (1994), pp. 233-260
dc.relationObaje et al., 2004 N. Obaje, H. Wehner, G. Scheeder, M. Abubakar, A. Jauro Hydrocarbon prospectivity of Nigeria's inland basins: from the viewpoint of organic geochemistry and organic petrology AAPG Bull., 88 (3) (2004), pp. 325-353
dc.relationOgala et al., 2012 J. Ogala, G. Siavalas, K. Christanis Coal petrography, mineralogy and geochemistry of lignite samples from the Ogwashi–Asaba Formation, Nigeria J. Afr. Earth Sci., 66 (2012), pp. 35-45
dc.relationOjoh, 1990 K. Ojoh Cretaceous geodynamic evolution of the southern part of the Benue Trough (Nigeria) in the equatorial domain of the South Atlantic. Stratigraphy, basin analysis and paleo-oceanography Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 14 (2) (1990), pp. 419-442
dc.relationOjoh, 1992 K. Ojoh The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography and geodynamic evolution in the Equatorial domain of the South Atlantic NAPE Bull, 7 (2) (1992), pp. 131-152
dc.relationOlade, 1975 M. Olade Evolution of Nigeria's Benue Trough (aulacogen): a tectonic model Geol. Mag., 112 (6) (1975), pp. 575-583
dc.relationPetters, 1982 S.W. Petters Central west African Cretaceous-Tertiary benthic foraminifera and stratigraphy Palaeontogr. Abt. v., 179 (1982), pp. 1-104
dc.relationPi et al., 2014 D.-H. Pi, S.-Y. Jiang, L. Luo, J.-H. Yang, H.-F. Ling Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: evidence from redox-sensitive trace element geochemistry Palaeogeogr. Palaeoclimatol. Palaeoecol., 398 (2014), pp. 125-131
dc.relationPickel et al., 2017 W. Pickel, J. Kus, D. Flores, S. Kalaitzidis, K. Christanis, B. Cardott, M. Misz-Kennan, S. Rodrigues, A. Hentschel, M. Hamor-Vido Classification of liptinite–ICCP system 1994 Int. J. Coal Geol., 169 (2017), pp. 40-61
dc.relationPiper, 1974 D.Z. Piper Rare earth elements in the sedimentary cycle: a summary Chem. Geol., 14 (4) (1974), pp. 285-304
dc.relationPrice and Baker, 1985 L.C. Price, C.E. Baker Suppression of vitrinite reflectance in amorphous rich kerogen-a major unrecognized problem J. Petrol. Geol., 8 (1) (1985), pp. 59-84
dc.relationRaymond and Murchison, 1991 A.C. Raymond, D.G. Murchison Influence of exinitic macerals on the reflectance of vitrinite in Carboniferous sediments of the Midland Valley of Scotland Fuel, 70 (2) (1991), pp. 155-161
dc.relationRen et al., 1999 D. Ren, F. Zhao, Y. Wang, S. Yang Distributions of minor and trace elements in Chinese coals Int. J. Coal Geol., 40 (2–3) (1999), pp. 109-118
dc.relationRyemshak and Jauro, 2013 S.A. Ryemshak, A. Jauro Proximate analysis, rheological properties and technological applications of some Nigerian coals Int. J. Ind. Chem., 4 (1) (2013), p. 7
dc.relationSaikia et al., 2015 B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, A. O'Bryan, A. Sharma, B.P. Baruah, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37
dc.relationSaxby, 1980 J.D. Saxby Atomic HC ratios and the generation of oil from coals and kerogens Fuel, 59 (5) (1980), pp. 305-307
dc.relationSilva and Kalkreuth, 2005 M. Silva, W. Kalkreuth Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank Int. J. Coal Geol., 64 (3–4) (2005), pp. 217-238
dc.relationSingh and Singh, 1996 M.P. Singh, P.K. Singh Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India Int. J. Coal Geol., 29 (1–3) (1996), pp. 93-118
dc.relationSingh et al., 2012 P.K. Singh, M. Singh, A.K. Singh, A. Naik Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India Energy Explor. Exploit., 30 (2) (2012), pp. 171-191
dc.relationSnowdon, 1991 L.R. Snowdon Oil from type III organic matter: resinite revisited Org. Geochem., 17 (6) (1991), pp. 743-747
dc.relationSpeight, 2012 J.G. Speight The Chemistry and Technology of Coal (third ed. ed), CRC Press, USA (2012)
dc.relationSýkorová et al., 2005 I. Sýkorová, W. Pickel, K. Christanis, M. Wolf, G. Taylor, D. Flores Classification of huminite—ICCP system 1994 Int. J. Coal Geol., 62 (1–2) (2005), pp. 85-106
dc.relationTaylor et al., 1998 G. Taylor, M. Teichmuller, A. Davis, C. Diessel, R. Littke, P. Robert Organic Petrology Gebruder Borntraeger, Berlin, Stutgart (1998)
dc.relationTissot and Welte, 1984 B. Tissot, D. Welte Petroleum Formation and Occurrence (second ed.), Springer, Berlin (1984), p. 699
dc.relationUdo, 1992 O. Udo Some trace metal in selected Niger Delta crude oils: application in oil-oil correlation studies J. Min. Geol., 28 (2) (1992), pp. 289-291
dc.relationvan Krevelen, 1961 D.W. van Krevelen Coal Typology, Chemistry, Physics, Constitution 3, Elsevier, Amsterdam (1961)
dc.relationWard, 2016 C.R. Ward Analysis, origin and significance of the mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27
dc.relationWignall and Myers, 1988 P.B. Wignall, K.J. Myers Interpreting benthic oxygen levels in mudrocks: a new approach Geol., 16 (5) (1988), pp. 452-455
dc.relationWignall and Twitchett, 1996 P.B. Wignall, R.J. Twitchett Oceanic anoxia and the end Permian mass extinction Science, 272 (5265) (1996), pp. 1155-1158
dc.relationWilkins and George, 2002 R.W. Wilkins, S.C. George Coal as a source rock for oil: a review Int. J. Coal Geol., 50 (1–4) (2002), pp. 317-361
dc.relationWorld Coal Association, 2017 World Coal Association Basic Coal Facts, Coal Factsheet World Coal Association (WCA), United Kingdom (UK) (2017)
dc.relationYasnygina et al., 2006 T.M. Yasnygina, M. Yu, S.P. Rasskazov, Sp, T.K. Zemskaya, Om The ICP-MS Determination of Rare Earths and Other Metals in Baikal Crude Oil: Comparison with Crude Oils in Siberia and the Russian Far East, Doklady Earth Sciences Interperiodica Publishing, c1998-, Moscow (2006), pp. 1237-1240
dc.relationZhao et al., 2013 L. Zhao, C.R. Ward, D. French, I.T. Graham Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China Int. J. Coal Geol., 116 (2013), pp. 208-226
dc.relationZhao et al., 2018 Y. Zhao, C.Y. Liu, H.Q. Niu, X.C. Zhao, D.D. Zhang, D. Yang, H. Deng Trace and rare earth element geochemistry of crude oils and their coexisting water from the Jiyuan Area of the Ordos Basin, N China Geol. J., 53 (1) (2018), pp. 336-348
dc.relationZhao et al., 2015 L. Zhao, C.R. Ward, D. French, I.T. Graham Major and trace element geochemistry of coals and intra-seam claystone from the Songzao Coalfield, SW China Minerals, 5 (2015), pp. 870-893
dc.relation313
dc.relation300
dc.relation3
dc.relation3
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsCopyright © 2022 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2666759222000294?via%3Dihub
dc.subjectCoal
dc.subjectMaceral
dc.subjectTrace Elements
dc.subjectMineralogy
dc.subjectDepositional Environments
dc.titleGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.coverageNigeria


Este ítem pertenece a la siguiente institución