dc.creator | Diel, Júlia | |
dc.creator | DA BOIT MARTINELLO, KATIA | |
dc.creator | da Silveira, Christian L. | |
dc.creator | Pereira, Hércules A. | |
dc.creator | P. Franco, Dison S. | |
dc.creator | O. Silva, Luis F. | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2022-06-23T14:07:14Z | |
dc.date | 2023-12-08 | |
dc.date | 2022-06-23T14:07:14Z | |
dc.date | 2021-12-08 | |
dc.date.accessioned | 2023-10-03T19:02:17Z | |
dc.date.available | 2023-10-03T19:02:17Z | |
dc.identifier | Júlia C. Diel, Kátia da Boit Martinello, Christian L. da Silveira, Hércules A. Pereira, Dison S.P. Franco, Luis F.O. Silva, Guilherme L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations, Chemical Engineering Journal, Volume 431, Part 2, 2022, 134095, ISSN 1385-8947,https://doi.org/10.1016/j.cej.2021.134095 (https://www.sciencedirect.com/science/article/pii/S1385894721056692) | |
dc.identifier | 1385-8947 | |
dc.identifier | https://hdl.handle.net/11323/9291 | |
dc.identifier | https://doi.org/10.1016/j.cej.2021.134095 | |
dc.identifier | 10.1016/j.cej.2021.134095 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9167004 | |
dc.description | The present work used a statistical physics approach to present new insights into the adsorption of the pesticide glyphosate on modified carbon nanotubes via green synthesis (MWCNT/MPNs-Fe). The experimental equilibrium curves obtained for this system under pH 4 at temperatures 298, 308, 318, and 328 K were simulated from monolayer, double layer, and multilayer models, with 1 and 2 energies, considering real and ideal fluid approaches. Taking into account the statistical indicators and the physical meaning of the parameters, exploring simplifying hypotheses, the Hill model with 1 energy and ideal fluid approach (M1) presented the best prediction of the experimental data, indicating that glyphosate adsorption occurs by the formation of a monolayer and that pesticide interaction with MWCNT/MPNs-Fe are characterized by only one energy. Based on this approach, to assess the steric aspects of the system, the number of molecules adsorbed per site (n), the density of receptor sites (Nm), adsorption capacity at saturation (Qsat), and concentration at half-saturation (W) were interpreted. As for the energetic aspects, the adsorption energy (ΔE) was inferred. The combination of parameters to its evolution with temperature and the magnitude of ΔE indicated an exothermic process involving a physical interaction mechanism. Finally, the new insights showed that the MWCNT/MPNs-Fe adsorbent favored pesticide adsorption by interacting glyphosate molecules with the metallic iron nanoparticles present on the adsorbent surface. © 2021 Elsevier B.V. | |
dc.format | 10 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier | |
dc.publisher | Netherlands | |
dc.relation | Chemical Engineering Journal | |
dc.relation | [1] B. Fern´
andez-Reyes, K. Ortiz-Martínez, J.A. Lasalde-Ramírez, A.J. Hernandez- ´
Maldonado, Engineered adsorbents for the removal of contaminants of emerging
concern from water, in: Contaminants of Emerging Concern in Water and
Wastewater, Elsevier Inc., 2020, pp. 3–45, https://doi.org/10.1016/B978-0-12-
813561-7.00001-8. | |
dc.relation | [2] J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy to eliminate emerging
contaminants from the aqueous environment: Heterogeneous Fenton process,
J. Clean. Prod. 278 (2021) 124014, https://doi.org/10.1016/j.
jclepro.2020.124014. | |
dc.relation | [3] World Health Organization (WHO), 1994. Environmental Health Criteria 159:
Glyphosate [WWW Document]. | |
dc.relation | [4] S. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida,
Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as
reusable adsorbent for highly efficient removal of glyphosate from water, Appl.
Surf. Sci. 411 (2017) 457–465, https://doi.org/10.1016/j.apsusc.2017.03.206. | |
dc.relation | [5] R. Mesnage, M.N. Antoniou, Facts and Fallacies in the Debate on Glyphosate
Toxicity, Front. Public Heal. 5 (2017) 1–7, https://doi.org/10.3389/
fpubh.2017.00316. | |
dc.relation | [6] Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang, Comparative study of glyphosate
removal on goethite and magnetite: Adsorption and photo-degradation, Chem.
Eng. J. 352 (2018) 581–589, https://doi.org/10.1016/j.cej.2018.07.058. | |
dc.relation | [7] N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene
hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J. 295
(2016) 391–402, https://doi.org/10.1016/j.cej.2016.03.051. | |
dc.relation | [8] Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane separation of
glyphosate mother liquor using a precipitation method, Desalination 313 (2013)
140–144, https://doi.org/10.1016/j.desal.2012.12.011. | |
dc.relation | [9] H. Rubí-Juarez, ´ S. Cotillas, C. S´
aez, P. Canizares, ˜ C. Barrera-Díaz, M.A. Rodrigo,
Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate, Sep. Purif. Technol. 167 (2016) 127–135, https://doi.org/
10.1016/j.seppur.2016.04.048. | |
dc.relation | [10] S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2
photocatalyst, Chemosphere 67 (5) (2007) 1010–1017, https://doi.org/10.1016/j.
chemosphere.2006.10.054. | |
dc.relation | [11] A. Serra-Clusellas, L. De Angelis, M. Beltramo, M. Bava, J. De Frankenberg,
J. Vigliarolo, N. Di Giovanni, J.D. Stripeikis, J.A. Rengifo-Herrera, M.M. Fidalgo De
Cortalezzi, Glyphosate and AMPA removal from water by solar induced processes
using low Fe(III) or Fe(II) concentrations, Environ. Sci. Water Res. Technol. 5
(2019) 1932–1942, https://doi.org/10.1039/c9ew00442d. | |
dc.relation | [12] T. Zheng, Y. Sun, Y. Lin, N. Wang, P. Wang, Study on preparation of microwave
absorbing MnOx/Al2O3 adsorbent and degradation of adsorbed glyphosate in MWUV system, Chem. Eng. J. 298 (2016) 68–74, https://doi.org/10.1016/j.
cej.2016.03.143. | |
dc.relation | [13] M.R. Assalin, S.G. De Moraes, S.C.N. Queiroz, V.L. Ferracini, N. Duran, Studies on
degradation of glyphosate by several oxidative chemical processes: Ozonation,
photolysis and heterogeneous photocatalysis. J. Environ. Sci. Heal. - Part B Pestic,
Food Contam. Agric. Wastes 45 (1) (2009) 89–94, https://doi.org/10.1080/
03601230903404598. | |
dc.relation | [14] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk
as a bio-based adsorbent: A critical review, J. Environ. Manage. 246 (2019)
314–323, https://doi.org/10.1016/j.jenvman.2019.05.145. | |
dc.relation | [15] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk,
A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on
biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm
cactus: Experimental study and theoretical modeling via monolayer and double
layer statistical physics models, Chem. Eng. J. 378 (2019) 122101, https://doi.org/
10.1016/j.cej.2019.122101. | |
dc.relation | [16] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.d.S. Duarte, G.L. Dotto, A. Yazidi,
L. Sellaoui, A. Erto, C.L. Zanta, L. Meili, Adsorption of a non-steroidal antiinflammatory drug onto MgAl/LDH-activated carbon composite – Experimental
investigation and statistical physics modeling, Colloids Surfaces A Physicochem.
Eng. Asp. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217. | |
dc.relation | [17] C.R. Zhou, G.P. Li, D.G. Jiang, Study on behavior of alkalescent fiber FFA-1
adsorbing glyphosate from production wastewater of glyphosate, Fluid Phase
Equilib. 362 (2014) 69–73. | |
dc.relation | [18] G.L. Dotto, E. Chaves, Y. Benguerba, E. ´ Cl´
audio, A. Ben, A. Erto, New insights into
the adsorption of crystal violet dye on functionalized multi-walled carbon
nanotubes : Experiments, statistical physics and COSMO – RS models application
248 (2017) 890–897, https://doi.org/10.1016/j.molliq.2017.10.124. | |
dc.relation | [19] R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A.
D. Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto, Removal of glyphosate
herbicide from water using biopolymer membranes, J. Environ. Manage. 151
(2015) 353–360, https://doi.org/10.1016/j.jenvman.2015.01.005. | |
dc.relation | [20] F. Chen, C. Zhou, G.-P. Li, F.-F. Peng, Thermodynamics and kinetics of glyphosate
adsorption on resin D301, Arab. J. Chem. 9 (2016) S1665–S1669, https://doi.org/
10.1016/j.arabjc.2012.04.014. | |
dc.relation | [21] I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R.
A. Usman, M. Vithanage, Mechanistic modeling of glyphosate interaction with rice
husk derived engineered biochar, Microporous Mesoporous Mater. 225 (2016)
280–288, https://doi.org/10.1016/j.micromeso.2016.01.017. | |
dc.relation | [22] P. Marin, R. Bergamasco, A.N. Modenes, ´ P.R. Paraiso, S. Hamoudi, Synthesis and
characterization of graphene oxide functionalized with MnFe2O4 and supported on
activated carbon for glyphosate adsorption in fixed bed column, Process Saf.
Environ. Prot. 123 (2019) 59–71, https://doi.org/10.1016/j.psep.2018.12.027. | |
dc.relation | [23] S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y.S. Ok,
A. Usman, A. Abduljabbar, M. Vithanage, Equilibrium and kinetic mechanisms of
woody biochar on aqueous glyphosate removal, Chemosphere 144 (2016)
2516–2521, https://doi.org/10.1016/j.chemosphere.2015.07.080. | |
dc.relation | [24] L. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar, Utilization of multi-metal
laden spent biosorbent for removal of glyphosate herbicide from aqueous solution
and its mechanism elucidation, Chem. Eng. J. 361 (2019) 1063–1077. | |
dc.relation | [25] S. Zavareh, Z. Farrokhzad, F. Darvishi, Modification of zeolite 4A for use as an
adsorbent for glyphosate and as an antibacterial agent for water, Ecotoxicol.
Environ. Saf. 155 (2018) 1–8, https://doi.org/10.1016/j.ecoenv.2018.02.043. | |
dc.relation | [26] L. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La, Aminefunctionalized, multi-arm star polymers: A novel platform for removing glyphosate
from aqueous media, Chemosphere 169 (2017) 437–442, https://doi.org/10.1016/
j.chemosphere.2016.11.049. | |
dc.relation | [27] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141
adsorption onto multi–walled carbon nanotubes using statistical physics coupled
with Van der Waals equation, Sep. Purif. Technol. 224 (2019) 290–294, https://
doi.org/10.1016/j.seppur.2019.05.042. | |
dc.relation | [28] T. Rasheed, M. Adeel, F. Nabeel, M. Bilal, H.M.N. Iqbal, TiO2/SiO2 decorated
carbon nanostructured materials as a multifunctional platform for emerging
pollutants removal, Sci. Total Environ. 688 (2019) 299–311, https://doi.org/
10.1016/j.scitotenv.2019.06.200. | |
dc.relation | [29] C. Parlak, O. ¨ Alver, Adsorption of ibuprofen on silicon decorated fullerenes and
single walled carbon nanotubes: A comparative DFT study, J. Mol. Struct. 1184
(2019) 110–113, https://doi.org/10.1016/j.molstruc.2019.02.023. | |
dc.relation | [30] A. Avcı, ˙I. ˙Inci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube, J. Mol. Struct. 1206 (2020) 127711, https://doi.org/10.1016/j. molstruc.2020.127711. | |
dc.relation | [31] Z. Li, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G.L. Dotto, A. Bajahzar,
H. Belmabrouk, A. Bonilla-Petriciolet, Q. Li, Adsorption of hazardous dyes on
functionalized multiwalled carbon nanotubes in single and binary systems:
Experimental study and physicochemical interpretation of the adsorption
mechanism, Chem. Eng. J. 389 (2020) 124467, https://doi.org/10.1016/j.
cej.2020.124467. | |
dc.relation | [32] L.D.T. Prola, F.M. Machado, C.P. Bergmann, F.E. de Souza, C.R. Gally, E.C. Lima,
M.A. Adebayo, S.L.P. Dias, T. Calvete, Adsorption of Direct Blue 53 dye from
aqueous solutions by multi-walled carbon nanotubes and activated carbon,
J. Environ. Manage. 130 (2013) 166–175, https://doi.org/10.1016/j.
jenvman.2013.09.003. | |
dc.relation | [33] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from
aqueous solution by surface oxidized carbon nanotubes, Carbon N. Y. 41 (5) (2003)
1057–1062, https://doi.org/10.1016/S0008-6223(02)00440-2. | |
dc.relation | [34] Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption
on carbon nanotubes, Chem. Phys. Lett. 357 (3-4) (2002) 263–266. | |
dc.relation | [35] O. ¨ Çelebican, ˙
I. ˙
Inci, N. Baylan, Modeling and optimization of formic acid
adsorption by multiwall carbon nanotube using response surface methodology,
J. Mol. Struct. 1203 (2020) 127312, https://doi.org/10.1016/j.
molstruc.2019.127312. | |
dc.relation | [36] D. Lin, B. Xing, Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of
Aromaticity and Substitution of Hydroxyl Groups, Environ. Sci. Technol. 42 (19)
(2008) 7254–7259, https://doi.org/10.1021/es801297u. | |
dc.relation | [37] Z. Hu, H. Xie, Q. Wang, S. Chen, Adsorption and diffusion of sulfur dioxide and
nitrogen in single-wall carbon nanotubes, J. Mol. Graph. Model. 88 (2019) 62–70,
https://doi.org/10.1016/j.jmgm.2019.01.003. | |
dc.relation | [38] S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.
S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon
nanotubes, J. Clean. Prod. 230 (2019) 783–793, https://doi.org/10.1016/j.
jclepro.2019.05.154. | |
dc.relation | [39] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval, H.A. Pereira, I.D.S. Nunes, C.
W. Basso, M.d.C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon
nanotubes impregnated with metallic nanoparticles: Characterization and
application in glyphosate adsorption, Chemosphere 283 (2021) 131193, https://
doi.org/10.1016/j.chemosphere.2021.131193. | |
dc.relation | [40] Z. Li, L. Sellaoui, G.L. Dotto, A.B. Lamine, A. Bonilla-Petriciolet, H. Hanafy,
H. Belmabrouk, M.S. Netto, A. Erto, Interpretation of the adsorption mechanism of
Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via
advanced statistical physics model, J. Mol. Liq. 285 (2019) 165–170, https://doi.
org/10.1016/j.molliq.2019.04.091. | |
dc.relation | [41] D.S.P. Franco, J.S. Piccin, E.C. Lima, G.L. Dotto, Interpretations about methylene
blue adsorption by surface modified chitin using the statistical physics treatment,
Adsorption 21 (8) (2015) 557–564, https://doi.org/10.1007/s10450-015-9699-z. | |
dc.relation | [42] L. Sellaoui, E.C. ´ Lima, G.L. Dotto, S.L.P. Dias, A. Ben Lamine, Physicochemical
modeling of reactive violet 5 dye adsorption on home-made cocoa shell and
commercial activated carbons using the statistical physics theory, Results Phys. 7
(2017) 233–237, https://doi.org/10.1016/j.rinp.2016.12.014. | |
dc.relation | [43] L. Sellaoui, N. Mechi, E.C. ´ Lima, G.L. Dotto, A. Ben Lamine, Adsorption of
diclofenac and nimesulide on activated carbon: Statistical physics modeling and
effect of adsorbate size, J. Phys. Chem. Solids 109 (2017) 117–123, https://doi.
org/10.1016/j.jpcs.2017.05.019. | |
dc.relation | [44] J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. de L. Burgo,
E.L. Foletto, G.L. Dotto, Carbon nanotubes impregnated with metallic
nanoparticles and their application as an adsorbent for the glyphosate removal in
an aqueous matrix, J. Environ. Chem. Eng. 9 (2) (2021) 105178, https://doi.org/
10.1016/j.jece:2021.105178. | |
dc.relation | [45] B. Bhaskara, P. Nagaraja, Direct Sensitive Spectrophotometric Determination of
Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and
Environmental Water Samples, Helv. Chim. Acta 89 (11) (2006) 2686–2693,
https://doi.org/10.1002/(ISSN)1522-267510.1002/hlca.v89:1110.1002/
hlca.200690240. | |
dc.relation | [46] L. Sellaoui, S. Knani, A. Erto, M.A. Hachicha, A. Ben Lamine, Equilibrium isotherm
simulation of tetrachlorethylene on activated carbon using the double layer model
with two energies: Steric and energetic interpretations, Fluid Phase Equilib. 408
(2016) 259–264, https://doi.org/10.1016/j.fluid.2015.09.022. | |
dc.relation | [47] K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, M. Khalfaoui, C. Tiar, S. Nacef,
A. Amrane, Molecular modeling of cationic dyes adsorption on agricultural
Algerian olive cake waste, J. Mol. Liq. 264 (2018) 127–133, https://doi.org/
10.1016/j.molliq.2018.05.045. | |
dc.relation | [48] N. Bouaziz, M. Ben, F. Aouaini, A. Ben, Investigation of hydrogen adsorption on
zeolites A, X and Y using statistical physics formalism, Mater. Chem. Phys. 225
(2019) 111–121, https://doi.org/10.1016/j.matchemphys.2018.12.024. | |
dc.relation | [49] F. Ayachi, E.C. Lima, A. Sakly, H. Mejri, A. Ben, Modeling of adsorption isotherms
of reactive red RR-120 on spirulina platensis by statistical physics formalism
involving interaction effect between adsorbate molecules, Prog. Biophys. Mol. Biol.
141 (2019) 47–59, https://doi.org/10.1016/j.pbiomolbio.2018.07.004. | |
dc.relation | [50] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Frohlich, ¨ A.B. Lamine,
Monolayer and multilayer adsorption of pharmaceuticals on activated carbon:
Application of advanced statistical physics models, J. Mol. Liq. 283 (2019)
276–286, https://doi.org/10.1016/j.molliq.2019.03.101. | |
dc.relation | [51] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application
of statistical physics formalism to the modeling of adsorption isotherms of
ibuprofen on activated carbon, Fluid Phase Equilib. 387 (2015) 103–110, https://
doi.org/10.1016/j.fluid.2014.12.018. | |
dc.relation | [52] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. BonillaPetriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue, sunset yellow
and tartrazine from aqueous solution on chitosan: Analytical interpretation via
multilayer statistical physics model, Chem. Eng. J. 382 (2020) 122952, https://doi.
org/10.1016/j.cej.2019.122952. | |
dc.relation | [53] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired
numerical optimization: Past, present and future, Swarm Evol. Comput. 1 (4)
(2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001. | |
dc.relation | [54] J. Kennedy, R. Eberhart, Particle Swarm Optimisation. Stud, Comput. Intell. 927
(1995) 1942–1948, https://doi.org/10.1007/978-3-030-61111-8_2. | |
dc.relation | [55] K. Levenberg, A method for the solution of certain non-linear problems in least
squares, Q. Appl. Math. 2 (2) (1944) 164–168, https://doi.org/10.1090/qam/
1944-02-0210.1090/qam/10666. | |
dc.relation | [56] D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear
Parameters, J. Soc. Ind. Appl. Math. 11 (2) (1963) 431–441, https://doi.org/
10.1137/0111030. | |
dc.relation | [57] J.J. Mor´e, The Leveberg-Marquardt Algorithm: Implementation and Theory,
Numer. Anal. (1977) 105–116. | |
dc.relation | [58] C.L. da Silveira, M.A. Mazutti, N.PG. Salau, Solid-state fermentation process model
reparametrization procedure for parameters estimation using particle swarm
optimization, J. of Chem. Tech. and Biotech. 91 (3) (2016) 762–768, https://doi.
org/10.1002/jctb.2016.91.issue-310.1002/jctb.4642. | |
dc.relation | [59] C.L. Silveira, A.C. Galv˜
ao, W.S. Robazza, J.V.T. Feyh, Modeling and parameters
estimation for the solubility calculations of nicotinamide using UNIFAC and
COSMO-based models, Fluid Phase Equilibria 535 (2021) 112970, https://doi.org/
10.1016/j.fluid.2021.112970. | |
dc.relation | [60] L. Sellaoui, B.B. Saha, S. Wjihi, A.B. Lamine, Physicochemical parameters
interpretation for adsorption equilibrium of ethanol on metal organic framework:
Application of the multilayer model with saturation, J. Mol. Liq. 233 (2017)
537–542, https://doi.org/10.1016/j.molliq.2016.07.017. | |
dc.relation | [61] H. Hanafy, L. Sellaoui, P.S. Thue, E.C. Lima, G.L. Dotto, T. Alharbi, H. Belmabrouk,
A. Bonilla-Petriciolet, A.B. Lamine, Statistical physics modeling and interpretation
of the adsorption of dye remazol black B on natural and carbonized biomasses,
J. Mol. Liq. 299 (2020) 112099, https://doi.org/10.1016/j.molliq.2019.112099. | |
dc.relation | [62] M. Khalfaoui, A. Nakhli, S. Knani, H.V. Baouab, A.B. Lamine, On the Statistical
Physics Modeling of Dye Adsorption onto Anionized Nylon, Consequent New
Interpretations 125 (2012) 1091–1102, https://doi.org/10.1002/app. | |
dc.relation | [63] O.P.d. Amarante Junior, T.C.R.D. Santos, N.M. Brito, M.L. Ribeiro, Glifosato:
propriedades, toxicidade, usos e legislaç˜
ao, Quim. Nova 25 (4) (2002) 589–593. | |
dc.relation | [64] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., 2019.
Adsorption in Water Treatment. Chem. Mol. Sci. Chem. Eng. 1–19. | |
dc.relation | [65] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, ´ H.E., 2017. Adsorption
processes for water treatment and purification, Springer. ed, Adsorption Processes
for Water Treatment and Purification. M´exico. https://doi.org/10.1007/978-3-
319-58136-1. | |
dc.relation | [66] S. Knani, M. Khalfaoui, M.A. Hachicha, A. Ben Lamine, M. Mathlouthi, Modelling
of water vapour adsorption on foods products by a statistical physics treatment
using the grand canonical ensemble, Food Chem. 132 (4) (2012) 1686–1692,
https://doi.org/10.1016/j.foodchem.2011.11.065. | |
dc.relation | [67] M.B. Manaa, N. Wazzan, A.B. Lamine, Physico-chemical interpretations of the
adsorption isotherms of D-π-A sensitizers with pyridyl group on TiO2 for dye
sensitized solar cells using statistical physics and density functional theory, J. Mat.
Reser. Tech. 15 (2021) 369–383, https://doi.org/10.1016/j.jmrt.2021.08.017. | |
dc.relation | [68] H.A. Al-Yousef, B.M. Alotaibi, F. Aouaini, L. Sellaoui, A. Bonilla-Petriciolet,
Adsorption of ibuprofen on cocoa shell biomass-based adsorbents: Interpretation of
the adsorption equilibriumvia statistical physics theory, J. Mol. Liq. 331 (2021)
115697, https://doi.org/10.1016/j.molliq.2021.115697. | |
dc.relation | [69] M.S. Shamsudin, S.F. Azha, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, S. Ismail,
Performance and interactions of diclofenac adsorption using Alginate/ Carbonbased Films: Experimental investigation and statistical physics modelling, Chem.
Eng. J. 428 (2022) 131929, https://doi.org/10.1016/j.cej.2021.131929. | |
dc.relation | [70] H. Alyousef, M. Ben, F. Aouaini, Statistical physics modeling of water vapor
adsorption isotherm into kernels of dates : Experiments, microscopic interpretation
and thermodynamic functions evaluation, Arab. J. Chem. 13 (2020) 4691–4702,
https://doi.org/10.1016/j.arabjc.2019.11.004. | |
dc.relation | 10 | |
dc.relation | 1 | |
dc.relation | 431 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | © 2021 Elsevier B.V. All rights reserved. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1385894721056692?via%3Dihub | |
dc.subject | Glyphosate | |
dc.subject | Carbon nanotubes | |
dc.subject | Green synthesis | |
dc.subject | Adsorption isotherms | |
dc.subject | Statistical physics | |
dc.subject | Adsorption mechanism | |
dc.title | New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |