Aplicación de O3 y O3 /H2 O2 como postratamiento del efluente de un reactor anaerobio de flujo horizontal y Biomasa Inmovilizada De Flujo Horizontal (RAFABI) tratando aguas residuales hospitalarias

dc.creatorChaparro, Tatiana R
dc.creatorRueda-Bayona, Juan Gabriel
dc.date2023-06-23T22:20:49Z
dc.date2023-06-23T22:20:49Z
dc.date2021
dc.date.accessioned2023-10-03T19:02:15Z
dc.date.available2023-10-03T19:02:15Z
dc.identifierT. R. Chaparro & J. Rueda-Bayona, “Application of O3 and O3 /H2O2 for post-treatment of horizontal-flow anaerobic immobilized biomass (HAIB) effluent, treating hospital wastewater”, INGE CUC, vol. 17, no. 2, pp. 115–124, 2021. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.11
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10263
dc.identifier10.17981/ingecuc.17.2.2021.11
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC – Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9167002
dc.descriptionIntroducción— En los últimos años, se ha incrementado la atención a la presencia de “contaminantes emergentes” en aguas residuales urbanas, industriales y cuerpos de agua superficial. En la mayoría de los casos, estas sustancias, corresponden a contaminantes que aún no ha sido reglamentados a nivel nacional por las autoridades ambientales. Los hospitales son considerados como la mayor fuente de estos compuestos, resultado de diferentes actividades. No existe en la actualidad un consenso sobre cuál o cuáles son los tratamientos adecuados para tratar las aguas residuales que contienen estos compuestos. En general, los procesos biológicos convencionales por sí solos no alcanzan a cumplir con los valores de los límites de descarga, siendo necesario aplicar postratamientos como los Procesos de Oxidación Avanzada (POA), conocidos como una tecnología apropiada no sólo por aumentar la biodegradabilidad de los compuestos recalcitrantes, sino también por contribuir con la remoción de ciertas sustancias que son difíciles de tratar en un proceso biológico. Objetivo— Por tal razón, en este estudio se evaluó la aplicación de Ozono (O3 ) y O3/H2O2 al efluente de un Reactor Anaerobio de Flujo Horizontal y Biomasa Inmovilizada (RAFABI). Metodología— Los oxidantes fueron aplicados en un reactor de vidrio de borosilicato tipo batch en escala de laboratorio. El tiempo de reacción fue de 60 min y se tomaron muestras a intervalos de 15 min. Para evaluar el desempeño del tratamiento se midieron parámetros tales como la absorbancia a una longitud de onda de UV254, la relación de biodegradabilidad expresada como DQO/DBO5, y el color como VIS436. Todas las muestras fueron analizadas por duplicado. Resultados— Los resultados mostraron que la aplicación de O3 y O3/H2O2 produjeron un incremento en la biodegradabilidad del 25% y del 67% respectivamente. En relación con el color, se observó una eficiencia del 85 % para el Ozono y el 100 % para el O3/H2O2. Adicionalmente, los dos POA aplicados también mostraron ser efectivos para remover orgánicos aromáticos medidos como UV254, para lo cual se obtuvieron remociones entre el 40% y 50% de UV254. Conclusiones— Finalmente, es importante mencionar que la aplicación de procesos de oxidación avanzada como postratamiento de efluentes anaerobios, aumentan la biodegradabilidad principalmente por la transformación que sufren los compuestos recalcitrantes.
dc.descriptionIntroduction— In recent years, the “emerging pollutants” in urban, industrial, and surface water bodies have called the attention worldwide. In many cases, these substances correspond to pollutants that have not been yet regulated by the environmental authorities. Hospitals are considered the main source of these contaminants as a result of different activities. However, there is no consensus about the appropriate treatments for removing this kind of pollutants in the wastewaters; independent conventional biological processes do not reach the desirable values of discharge limits. Advanced Oxidation Processes (AOP) are known as an appropriate technology, not only to improve the biodegradability of recalcitrant compounds, but also to contribute to the removal of certain substances that are difficult to treat during the biological process. Objective— Thus, this study evaluated the application of O3z and O3 /H2O2 to the effluent of an Anaerobic Horizontal Flow Reactor and Immobilized Biomass (HAIB). Methodology— The oxidizers were applied in a labscale batch borosilicate glass reactor. The reaction time was 60 min and samples were taken at intervals of 15 min. Parameters such as absorbance at UV254, biodegradability ratio expressed as COD/BOD5, and color as VIS436 were measured. All samples were analyzed in duplicate. Results— The results showed that the application of Ozone and O3/H2O2 results in an increase in the biodegradability of 25% and 67% respectively. Concerning color, an efficiency of 85 % for Ozone and 100 % for O3 /H2O2 was observed. Besides, the AOPs applied also showed their effectiveness in removing aromatic organics, removing 40% to 50% of UV254. Conclusions— Finally, it is important to mention that the application of advanced oxidation processes as a posttreatment of anaerobic effluents increases biodegradability mainly due to the transformation suffered by recalcitrant compounds.
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] A. Husain, N. A. Khan, S. Ahmed, A. Dhingra, Ch. Pratap Singh, S. U. Khan, A. A. Mohammadi, F. Changani, M. Yousefi, S. Alam, S. Vambol, V. Vambol, A. Khursheed & I. Ali, “Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment,” J. Clean. Prod, vol. 269, pp. 1–4, 2020. https://doi.org/10.1016/j.jclepro.2020.122411
dc.relation[2] P. Verlicchi, “Trends, new insights and perspectives in the treatment of hospital effluents,” Curr. Opin. Environ. Sci. Heal., vol. 19, 2020. https://doi.org/10.1016/j.coesh.2020.10.005
dc.relation[3] A. Cheudjeu, “Correlation of D-xylose with severity and morbidity-related factors of COVID-19 and possible therapeutic use of D-xylose and antibiotics for COVID-19,,” Life Sci., vol. 260, no. August, pp. 118335, 2020. https://doi.org/10.1016/j.lfs.2020.118335
dc.relation[4] L. Heesom, L. Rehnberg, M. Nasim-Mohi, A. Jackson, M. Celinski, A. Dushianthan, P. Cook, W. Rivinberg & K. Saeed, “Procalcitonin as an antibiotic stewardship tool in COVID-19 patients in the intensive care,” J. Glob. Antimicrob. Resist., vol. 22, pp. 784–784, 2020. https://doi.org/10.1016/j.jgar.2020.07.017
dc.relation[5] S. K. Pathak, A. A. Salunke, P. Thivari, A. Pandey, K. Nandy, H. V. K. Ratna, S. Pandey, J. Chawla, J. Mujawar, A. Dhanwate & V. Menonb, “No benefit of hydroxychloroquine in COVID-19 : Results of Systematic Review and Meta-Analysis of Randomized Controlled Trials ” Diabetes & Metabolic Syndrome : Clinical Research & Reviews No bene fi t of hydroxychloroquine in COVID-19 : Results of Systema,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 6, pp. 1673–1680, 2020. https://doi.org/10.1016/j. dsx.2020.08.033
dc.relation[6] N. A. Khan, S. U. Khan, S. Ahmed, I. H., Farooqi, M. Yousefi, A. A. Mohammadi & F. Changanie, “Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review,” TrAC - Trends Anal. Chem., vol. 122, pp. 115744, 2020. https://doi.org/10.1016/j.trac.2019.115744
dc.relation[7] J. P. Scott and D. F. Ollis, “Integration of chemical and biological oxidation processes for water treatment: Review and recommendations,” Environ. Prog., vol. 14, no. 2, pp. 88–103, 1995. https://doi.org/10.1002/ ep.670140212
dc.relation[8] W. H. Glaze, J.-W. Kung & D. H. Chapin, “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation,” Ozone: Sci Eng, vol. 9, no. 4, pp. 335–352, 2008. https:// doi.org/10.1080/01919518708552148
dc.relation[9] R. Andreozzi, V. Caprio, A. Insola & R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catal. Today, vol. 53, no. 1, pp. 51–59, 1999. https://doi.org/10.1016/S0920- 5861(99)00102-9
dc.relation[10] C. P. H. C. Dong & Z. Tang, “Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment,” Waste Management, vol. 13, no. 5-7, pp. 361–377, 1993. https://doi.org/10.1016/0956- 053X(93)90070-D
dc.relation[11] P. R. Gogate & A. B. Pandit, “A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions,” Adv. Environ. Res., vol. 8, no. 3-4, pp. 501–551, 2004. https://doi. org/10.1016/S1093-0191(03)00032-7
dc.relation[12] O. Legrini, E. Oliveros, & A. M. Braun, “Photochemical Processes for Water Treatment,” Chem. Rev., vol. 93, no. 2, pp. 671–698, 1993. https://doi.org/10.1021/cr00018a003
dc.relation[13] J. Staehelin, R. E. Bühler & J. Hoigné, “Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates,” J Phys Chem, vol. 88, no. 24, pp. 5999–6004, 1984. https://doi. org/10.1021/j150668a051
dc.relation[14] J. Hoigne & H. Bader, “Ozonation of Water: Selectivity and Rate of Oxidation of Solutes,” Ozone Sci Eng, vol. 1, pp. 73–85, 1979. https://doi.org/10.1080/01919517908550834
dc.relation[15] F. J. Beltrán, J. F. García-Araya, J. Frades, P. Álvarez & O. Gimeno, “Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters,” Water Res, vol. 33, no. 3, pp. 723–732, 1999. https://doi. org/10.1016/S0043-1354(98)00239-5
dc.relation[16] M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez & S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: A general review,” Appl Catal B Environ, vol. 47, no. 4, pp. 219–256, 2004. https://doi.org/10.1016/j.apcatb.2003.09.010
dc.relation[17] T. E. Agustina, H. M. Ang & V. K. Vareek, “A review of synergistic effect of photocatalysis and ozonation on wastewater treatment,” J Photochem. Photobiol C Photochem Rev, vol. 6, no. 4, pp. 264–273, 2005. https://doi.org/10.1016/j.jphotochemrev.2005.12.003
dc.relation[18] M. Jeworski & E. Heinzle, “Combined chemical-biological treatment of wastewater containing refractory pollutants,” Biotechnol. Annu Rev, vol. 6, pp. 163–196, 2000. https://doi.org/10.1016/S1387-2656(00)06022-1
dc.relation[19] W. Glaze, F. Beltran, T. Tuhkanen & J. W. Kang, “Chemical models of advanced oxidation proces,” Water Pollut Res J Canada, vol. 27, no. 1, pp. 23–42, 1992. https://doi.org/10.2166/wqrj.1992.002
dc.relation[20] I. L. De Mattos, K. A. Shiraishi, A. D. Braz & J. R. Fernandes, “Peróxido de hidrogênio: importância e determinação,” Quím Nova, vol. 26, no. 3, pp. 373–380, 2003. https://doi.org/10.1590/S0100- 40422003000300015
dc.relation[21] J. P. Scott & D. F. Ollis, “Integration of Chemical and Biological Oxidation Processes for Water Treatment : Review and Recommendations,” Environ Prog, vol. 14, no. 2, pp. 88–103, 1995. https://doi.org/10.1002/ ep.670140212
dc.relation[22] A. Ried, J. Mielcke, A. Wieland, S. Schaefer & M. Sievers, “An overview of the integration of ozone systems in biological treatment steps,” Water Sci Technolvol. 55, no. 12, pp. 253–258, 2007. https://doi. org/10.2166/wst.2007.413
dc.relation[23] L. Bijan & M. Mohseni, “Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents,” Water Sci Technol, vol. 50, no. 3, pp. 173–182, 2004. https://doi.org/10.2166/ wst.2004.0190
dc.relation[24] APHA, Standard Methods for examination of water and wastewate, WA: APHA, 2012.
dc.relation[25] F. Çeçen, “Investigation of substrate degradation and nonbiodegradable portion in several pulp bleaching wastes,” Water Sci Technol, vol. 40, no. 11–12, pp. 305–312, 1999. https://doi.org/10.1016/S0273- 1223(99)00732-5
dc.relation[26] T. R. Chaparro & E. C. Pires, “ost-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill,” Water Sci Technol, vol. 71, no. 3, pp. 382–9, 2015. https://doi.org/10.2166/wst.2014.527
dc.relation[27] B. Roig, C. Gonzalez & O. Thomas, “Simple UV/UV-visible method for nitrogen and phosphorus measurement in wastewater,” Talanta, vol. 50, no. 4, pp. 751–758, 1999. https://doi.org/10.1016/S0039- 9140(99)00203-9
dc.relation[28] D. Botelho, T. Rodríguez & E. Cleto, “Advanced oxidation process H2 O2/UV combined with anaerobic digestion to remove chlorinated organics from bleached kraft pulp mill wastewater,” Rev Fac Ing, no. 63, 2012. Disponible en https://revistas.udea.edu.co/index.php/ingenieria/article/view/12485
dc.relation[29] I. A. Alaton & S. Teksoy, “Acid dyebath effluent pretreatment using Fenton’s reagent: Process optimization, reaction kinetics and effects on acute toxicity,” Dye Pigment, vol. 73, no. 1, pp. 31–39, 2007. https:// doi.org/10.1016/j.dyepig.2005.09.027
dc.relation[30] J. Mousel & D. Pinnekamp, “Ozonation of nursing home wastewater pretreated in a membrane bioreactor,” Water Sci Technol, vol. 78, no. 2, pp. 266–278, 2018. https://doi.org/10.2166/wst.2018.288
dc.relation[31] M. Punzi, F. Nilsson, A. Anbalagan, B.-M. Svensson, K. Jönsson, B. Mattiasson & M. Jonstrup, “Combined anaerobic – ozonation process for treatment of textile wastewater : Removal of acute toxicity and mutagenicity,” J Hazard Mater, vol. 292, pp. 52–60, 2015. https://doi.org/10.1016/j.jhazmat.2015.03.018
dc.relation[32] E. Bataller, M. Véliz, E. Fernández, L. Hernández, C. Fernández, I. Álvarez & C. Sánchez, “Influencia de la Ozonización en el Tratamiento de un Efluente Secundario,” Rev AIDIS Ing Cienc Amb, vol. 5, no. 2, pp. 28–36, 2005. Disponible en http://www.journals.unam.mx/index.php/aidis/issue/archive
dc.relation[33] D. Paternina, E. Arias & J. Barragan, “Estudio cinético de la descomposición catalizada de peróxido de hidrógeno sobre carbón activado,”Quim. Nova, vol. 32, no. 4, pp. 934–938, 2009. https://doi.org/10.1590/ S0100-40422009000400020
dc.relation[34] C. E. Diaz, F. León, F. Martínez & M. Daza, “Oxidacion de antraceno con oxigeno singulete generado quimicamente por el sistema molibdato de sodio/peroxido de hidrogeno,” Rev Col Quim, vol. 37, no. 1, pp. 45–53, 2008. http://dx.doi.org/10.15446/rev.colomb.quim
dc.relation[35] D. Grisales, J. Ortega & T. Rodríguez, “Remocion de la materia organica y toxicidad en aguas residuales hospitalarias aplicando ozono ,” DYNA, vol. 79, no. 173 PART I, pp. 109–115, 2012. Disponible en https:// revistas.unal.edu.co/index.php/dyna/article/view/30753
dc.relation[36] P. Foladori, F. Cutrupi, N. Segata, S. Manara, F. Pinto, F. Malpei, L. Bruni & G. La Rosa, “SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review ,” Sci. Total Environ., vol. 743, pp. 1–12, 2020. https://doi.org/10.1016/j.scitotenv.2020.140444
dc.relation[37] S. Rodríguez, R. Bermúdez, M. Serrat & A. Kouroma, “Selección de cepas de Pleurotus ostreatus para la decoloración de efluentes industriales,” Rev Mex Micol, vol. 23, pp.9–15, 2006. Disponible en https://www. scientiafungorum.org.mx/index.php/micologia/article/view/973
dc.relation[38] C. Chernicharo, “,” Anaerobic Reactor, 1st ed. LDN, UK: IWA, 2007.
dc.relation[39] Z. Qiu, J. Sun, D. Han, F. Wei, Q. Mei, B. Wei, X. Wang, Z. An, X. Bo, M. Li, J. Xie & M. He, “Ozonation of diclofenac in the aqueous solution: Mechanism, kinetics and ecotoxicity assessment,” Environ Res, vol. 188, no. February, pp.109713, 2020. https://doi.org/10.1016/j.envres.2020.109713
dc.relation[40] E. Gilbert, “Biodegradability of ozonation product as a function of COD and DOC elimination by examples of substitude aromatic substances,” Water Res, vol. 21, no. 10, pp. 1273–1278, 1987. https://doi. org/10.1016/0043-1354(87)90180-1
dc.relation[41] Z. Gutiérrez, E. Fernández, N. Herrera, L. Sepúlveda & J. Mármol, “Efecto de la aplicación de ozono sobre la biodegradabilidad de aguas de formación,” Multiciencias, vol. 2, no. 1, pp. 50–54, 2002. Disponible en https://produccioncientificaluz.org/index.php/multiciencias/article/view/16564
dc.relation[42] A. H. Mounteer, R.O. Pereira, A.A. Morais, D.B. Ruas, D.S.A. Silveira, D.B. Viana & R.C. Medeiros, “Advanced oxidation of bleached eucalypt kraft pulp mill effluent,,” Water Sci Technol, vol. 55, no. 6, pp. 109–116, 2007. https://doi.org/10.2166/wst.2007.218
dc.relation124
dc.relation115
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3425
dc.subjectOxidación avanzada
dc.subjectBiodegradabilidad
dc.subjectCompuestos emergentes
dc.subjectEfluentes hospitalarios
dc.subjectAdvanced oxidation
dc.subjectBiodegradability
dc.subjectEmerging compounds
dc.subjectHospital effluents
dc.subjectRealccitrance
dc.titleApplication of O3 and O3 /H2 O2 for post-treatment of Horizontal-Flow Anaerobic Immobilized Biomass (HAIB) effluent, treating hospital wastewater
dc.titleAplicación de O3 y O3 /H2 O2 como postratamiento del efluente de un reactor anaerobio de flujo horizontal y Biomasa Inmovilizada De Flujo Horizontal (RAFABI) tratando aguas residuales hospitalarias
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución