Análisis CFD de flujos turbulentos desplazados por bombas centrífugas con bajo número de Reynolds

dc.creatorSánchez De la Hoz, José M.
dc.creatorHernández, Brando
dc.creatorDuarte Forero, Jorge
dc.date2023-07-21T21:03:24Z
dc.date2023-07-21T21:03:24Z
dc.date2020
dc.date.accessioned2023-10-03T19:02:14Z
dc.date.available2023-10-03T19:02:14Z
dc.identifierJ. Sánchez-De la Hoz, B. Hernández y J. Duarte-Forero, “CFD analysis of turbulent flows transported by centrifugal pumps under low Re numbers”, LADEE, vol. 1, no. 1, pp. 1–9, 2020. https://doi.org/10.17981/ladee.01.01.2020.1
dc.identifierhttps://hdl.handle.net/11323/10330
dc.identifier10.17981/ladee.01.01.2020.1
dc.identifier2744-9750
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166997
dc.descriptionNumerical methodologies have presented an inexpensive solution of laminar and turbulent flows capable of predicting a wide range of mechanical devices in science and engineering. Computational tools have been employed in recent years to analyze the conservation equations behavior used to describe the interaction between turbulent and laminar flows used to transfer the energy needed to perform a complex mechanical system. Due to the above, this paper purpose the application of the numerical method linked to mathematical algorithms capable of generating an approximated solution of the partial differential equations system which determines pressure, and velocity values related to the centrifugal pump performance under low Re conditions in a virtual environment through OpenFOAM software, and Salome 8.3.0. An independence mesh analysis was computed to study the computational effort required to establish an approximated turbulence phenomena description performed by the centrifugal pump into the virtual environment supported by MRFSimpleFoam solver. Keywo
dc.descriptionLas metodologías numéricas han presentado una solución económica de flujos laminares y turbulentos capaz de predecir una amplia gama de dispositivos mecánicos en la ciencia y la ingeniería. En los últimos años se han empleado herramientas computacionales para analizar el comportamiento de las ecuaciones de conservación utilizadas para describir la interacción entre los flujos turbulentos y laminares utilizados para transferir la energía necesaria para operar un sistema mecánico complejo. Debido a lo anterior, este trabajo propone la aplicación del método numérico vinculado a algoritmos matemáticos capaces de generar una solución aproximada del sistema de ecuaciones diferenciales parciales que determina los valores de presión y velocidad relacionados con el rendimiento de la bomba centrífuga en condiciones de baja Re a través del software OpenFOAM y Salome 8.3.0. Se calculó un análisis de independencia de malla para estudiar el esfuerzo computacional requerido y así establecer una descripción aproximada de los fenómenos de turbulencia producidos por la bomba centrífuga en el entorno virtual que soporta el solver MRFSimpleFoam.
dc.format9 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationLADEE
dc.relation[1] T. Capurso, L. Bergamini & M. Torresi, “Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps,” Nucl. Eng. Des., vol. 341, no. 1, pp. 155–166, Jan. 2019, https://doi.org/10.1016/j.nucengdes.2018.11.002
dc.relation[2] S. Emani, M. Ramasamy & K. Z. K. Shaari, “Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers,” Appl. Therm. Eng., vol. 149, pp. 105–118, Feb. 2019, https://doi.org/10.1016/J. APPLTHERMALENG.2018.12.008
dc.relation[3] M. Cagnoli, A. de la Calle, J. Pye, L. Savoldi & R. Zanino, “A CFD-supported dynamic system-level model of a sodiumcooled billboard-type receiver for central tower CSP applications,” Sol. Energy, vol. 177, pp. 576–594, Jan. 2019. https://doi. org/10.1016/J.SOLENER.2018.11.031
dc.relation[4] X. Wang, M. Wang, J. Zhang & Y. Wu, “Study on the water seal formation process in advanced PWR pressurizer using CFD method,” Ann. Nucl. Energy, vol. 135, p. 106949, Jan. 2020. https://doi.org/10.1016/J.ANUCENE.2019.106949
dc.relation[5] O. M. Ilori, A. J. Jaworski & X. Mao, “Experimental and numerical investigations of thermal characteristics of heat exchangers in oscillatory flow,” Appl. Therm. Eng., vol. 144, pp. 910–925, Nov. 2018. https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.073
dc.relation[6] W. Qu, J. Xiong, S. Chen & X. Cheng, “High-fidelity PIV measurement of cross flow in 5 × 5 rod bundle with mixing vane grids,” Nucl. Eng. Des., vol. 344, pp. 131–143, Abr. 2019. https://doi.org/10.1016/j.nucengdes.2019.01.021
dc.relation[7] T. Ziegenhein, D. Lucas, G. Besagni & F. Inzoli, “Experimental study of the liquid velocity and turbulence in a large-scale air-water counter-current bubble column,” Exp. Therm. Fluid Sci., vol. 111, p. 109955, Feb. 2020. https://doi.org/10.1016/j. expthermflusci.2019.109955
dc.relation[8] W. Lyu & O. el Moctar, “Numerical and experimental investigations of wave-induced second order hydrodynamic loads,” Ocean Eng., vol. 131, pp. 197–212, Feb. 2017. https://doi.org/10.1016/j.oceaneng.2016.11.047
dc.relation[9] W. Yu-qin & D. Ze-wen, “Influence of blade number on flow-induced noise of centrifugal pump based on CFD/CA,” Vacuum, vol. 172, p. 109058, Feb. 2020. https://doi.org/10.1016/j.vacuum.2019.109058
dc.relation[10] N. Zhang, J. Jiang, B. Gao & X. Liu, “DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump,” Renew. Energy, vol. 153, pp. 193–204, Jun. 2020. https://doi.org/10.1016/j.renene.2020.02.015
dc.relation[11] H. Yousefi, Y. Noorollahi, M. Tahani, R. Fahimi & S. Saremian, “Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping,” Sustain. Energy Technol. Assessments, vol. 34, pp. 16–26, Aug. 2019. https://doi.org/10.1016/j.seta.2019.04.011
dc.relation[12] K. Wang, G. Luo, Y. Li, R. Xia & H. Liu, “Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 71–84, Aug. 2019. https://doi.org/10.1016/j. ijnaoe.2019.07.002
dc.relation[13] Z. Ge, D. He, R. Huang, J. Zuo & X. Luo, “Application of CFD-PBM coupling model for analysis of gas-liquid distribution characteristics in centrifugal pump,” J. Pet. Sci. Eng., vol. 194, p. 107518, Nov. 2020. https://doi.org/10.1016/j.petrol.2020.107518
dc.relation[14] S.-S. Deng, G.-D. Li, J.-F. Guan, X.-C. Chen & L.-X. Liu, “Numerical study of cavitation in centrifugal pump conveying different liquid materials,” Results Phys., vol. 12, pp. 1834–1839, Mar. 2019. https://doi.org/10.1016/j.rinp.2019.02.009
dc.relation[15] E. Terzi, A. Cataldo, P. Lorusso & R. Scattolini, “Modelling and predictive control of a recirculating cooling water system for an industrial plant,” J. Process Control, vol. 68, pp. 205–217, Aug. 2018. https://doi.org/10.1016/J.JPROCONT.2018.04.009
dc.relation[16] T. C. Roumpedakis, S. Chapaloglou, P. Pallis, A-D. Leontaritis, K. Braimakis, S. Karellas & P. Vourliotisa “Experimental Investigation and CFD Analysis of Heat Transfer in Single Phase Subcooler of a Small Scale Waste Heat Recovery ORC,” Energy Procedia, vol. 129, pp. 487–494, Sep. 2017. https://doi.org/10.1016/j.egypro.2017.09.166
dc.relation[17] H. Quan, Y. Guo, R. Li, Q. Su & Y. Chai, “Optimization design and experimental study of vortex pump based on orthogonal test,” Sci. Prog., vol. 103, no. 1, pp. 1–20, Oct. 2019. https://doi.org/10.1177/0036850419881883
dc.relation[18] Y. Gao, X. Fan & R. Dang, “Numerical characterization of the effects of flow rate on pressure and velocity distribution of pump as turbine,” Current science, vol. 117, no. 1, pp. 57-63, Aug. 2019. https://doi.org/10.18520/cs/v117/i1/57-63
dc.relation9
dc.relation1
dc.relation1
dc.relation1
dc.rights© The author; licensee Universidad de la Costa - CUC.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/IDEE/article/view/3072
dc.subjectCFD
dc.subjectTurbulence models
dc.subjectMesh independence study
dc.subjectOpenFOAM
dc.subjectCentrifugal pump
dc.subjectModelos de turbulencia
dc.subjectEstudio de independencia de malla
dc.subjectBomba centrífuga
dc.titleCFD analysis of turbulent flows transported by centrifugal pumps under low Re numbers
dc.titleAnálisis CFD de flujos turbulentos desplazados por bombas centrífugas con bajo número de Reynolds
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución