CFD analysis of turbulent flows transported by centrifugal pumps under low Re numbers
Análisis CFD de flujos turbulentos desplazados por bombas centrífugas con bajo número de Reynolds
dc.creator | Sánchez De la Hoz, José M. | |
dc.creator | Hernández, Brando | |
dc.creator | Duarte Forero, Jorge | |
dc.date | 2023-07-21T21:03:24Z | |
dc.date | 2023-07-21T21:03:24Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:02:14Z | |
dc.date.available | 2023-10-03T19:02:14Z | |
dc.identifier | J. Sánchez-De la Hoz, B. Hernández y J. Duarte-Forero, “CFD analysis of turbulent flows transported by centrifugal pumps under low Re numbers”, LADEE, vol. 1, no. 1, pp. 1–9, 2020. https://doi.org/10.17981/ladee.01.01.2020.1 | |
dc.identifier | https://hdl.handle.net/11323/10330 | |
dc.identifier | 10.17981/ladee.01.01.2020.1 | |
dc.identifier | 2744-9750 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9166997 | |
dc.description | Numerical methodologies have presented an inexpensive solution of laminar and turbulent flows capable of predicting a wide range of mechanical devices in science and engineering. Computational tools have been employed in recent years to analyze the conservation equations behavior used to describe the interaction between turbulent and laminar flows used to transfer the energy needed to perform a complex mechanical system. Due to the above, this paper purpose the application of the numerical method linked to mathematical algorithms capable of generating an approximated solution of the partial differential equations system which determines pressure, and velocity values related to the centrifugal pump performance under low Re conditions in a virtual environment through OpenFOAM software, and Salome 8.3.0. An independence mesh analysis was computed to study the computational effort required to establish an approximated turbulence phenomena description performed by the centrifugal pump into the virtual environment supported by MRFSimpleFoam solver. Keywo | |
dc.description | Las metodologías numéricas han presentado una solución económica de flujos laminares y turbulentos capaz de predecir una amplia gama de dispositivos mecánicos en la ciencia y la ingeniería. En los últimos años se han empleado herramientas computacionales para analizar el comportamiento de las ecuaciones de conservación utilizadas para describir la interacción entre los flujos turbulentos y laminares utilizados para transferir la energía necesaria para operar un sistema mecánico complejo. Debido a lo anterior, este trabajo propone la aplicación del método numérico vinculado a algoritmos matemáticos capaces de generar una solución aproximada del sistema de ecuaciones diferenciales parciales que determina los valores de presión y velocidad relacionados con el rendimiento de la bomba centrífuga en condiciones de baja Re a través del software OpenFOAM y Salome 8.3.0. Se calculó un análisis de independencia de malla para estudiar el esfuerzo computacional requerido y así establecer una descripción aproximada de los fenómenos de turbulencia producidos por la bomba centrífuga en el entorno virtual que soporta el solver MRFSimpleFoam. | |
dc.format | 9 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Colombia | |
dc.relation | LADEE | |
dc.relation | [1] T. Capurso, L. Bergamini & M. Torresi, “Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps,” Nucl. Eng. Des., vol. 341, no. 1, pp. 155–166, Jan. 2019, https://doi.org/10.1016/j.nucengdes.2018.11.002 | |
dc.relation | [2] S. Emani, M. Ramasamy & K. Z. K. Shaari, “Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers,” Appl. Therm. Eng., vol. 149, pp. 105–118, Feb. 2019, https://doi.org/10.1016/J. APPLTHERMALENG.2018.12.008 | |
dc.relation | [3] M. Cagnoli, A. de la Calle, J. Pye, L. Savoldi & R. Zanino, “A CFD-supported dynamic system-level model of a sodiumcooled billboard-type receiver for central tower CSP applications,” Sol. Energy, vol. 177, pp. 576–594, Jan. 2019. https://doi. org/10.1016/J.SOLENER.2018.11.031 | |
dc.relation | [4] X. Wang, M. Wang, J. Zhang & Y. Wu, “Study on the water seal formation process in advanced PWR pressurizer using CFD method,” Ann. Nucl. Energy, vol. 135, p. 106949, Jan. 2020. https://doi.org/10.1016/J.ANUCENE.2019.106949 | |
dc.relation | [5] O. M. Ilori, A. J. Jaworski & X. Mao, “Experimental and numerical investigations of thermal characteristics of heat exchangers in oscillatory flow,” Appl. Therm. Eng., vol. 144, pp. 910–925, Nov. 2018. https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.073 | |
dc.relation | [6] W. Qu, J. Xiong, S. Chen & X. Cheng, “High-fidelity PIV measurement of cross flow in 5 × 5 rod bundle with mixing vane grids,” Nucl. Eng. Des., vol. 344, pp. 131–143, Abr. 2019. https://doi.org/10.1016/j.nucengdes.2019.01.021 | |
dc.relation | [7] T. Ziegenhein, D. Lucas, G. Besagni & F. Inzoli, “Experimental study of the liquid velocity and turbulence in a large-scale air-water counter-current bubble column,” Exp. Therm. Fluid Sci., vol. 111, p. 109955, Feb. 2020. https://doi.org/10.1016/j. expthermflusci.2019.109955 | |
dc.relation | [8] W. Lyu & O. el Moctar, “Numerical and experimental investigations of wave-induced second order hydrodynamic loads,” Ocean Eng., vol. 131, pp. 197–212, Feb. 2017. https://doi.org/10.1016/j.oceaneng.2016.11.047 | |
dc.relation | [9] W. Yu-qin & D. Ze-wen, “Influence of blade number on flow-induced noise of centrifugal pump based on CFD/CA,” Vacuum, vol. 172, p. 109058, Feb. 2020. https://doi.org/10.1016/j.vacuum.2019.109058 | |
dc.relation | [10] N. Zhang, J. Jiang, B. Gao & X. Liu, “DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump,” Renew. Energy, vol. 153, pp. 193–204, Jun. 2020. https://doi.org/10.1016/j.renene.2020.02.015 | |
dc.relation | [11] H. Yousefi, Y. Noorollahi, M. Tahani, R. Fahimi & S. Saremian, “Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping,” Sustain. Energy Technol. Assessments, vol. 34, pp. 16–26, Aug. 2019. https://doi.org/10.1016/j.seta.2019.04.011 | |
dc.relation | [12] K. Wang, G. Luo, Y. Li, R. Xia & H. Liu, “Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 71–84, Aug. 2019. https://doi.org/10.1016/j. ijnaoe.2019.07.002 | |
dc.relation | [13] Z. Ge, D. He, R. Huang, J. Zuo & X. Luo, “Application of CFD-PBM coupling model for analysis of gas-liquid distribution characteristics in centrifugal pump,” J. Pet. Sci. Eng., vol. 194, p. 107518, Nov. 2020. https://doi.org/10.1016/j.petrol.2020.107518 | |
dc.relation | [14] S.-S. Deng, G.-D. Li, J.-F. Guan, X.-C. Chen & L.-X. Liu, “Numerical study of cavitation in centrifugal pump conveying different liquid materials,” Results Phys., vol. 12, pp. 1834–1839, Mar. 2019. https://doi.org/10.1016/j.rinp.2019.02.009 | |
dc.relation | [15] E. Terzi, A. Cataldo, P. Lorusso & R. Scattolini, “Modelling and predictive control of a recirculating cooling water system for an industrial plant,” J. Process Control, vol. 68, pp. 205–217, Aug. 2018. https://doi.org/10.1016/J.JPROCONT.2018.04.009 | |
dc.relation | [16] T. C. Roumpedakis, S. Chapaloglou, P. Pallis, A-D. Leontaritis, K. Braimakis, S. Karellas & P. Vourliotisa “Experimental Investigation and CFD Analysis of Heat Transfer in Single Phase Subcooler of a Small Scale Waste Heat Recovery ORC,” Energy Procedia, vol. 129, pp. 487–494, Sep. 2017. https://doi.org/10.1016/j.egypro.2017.09.166 | |
dc.relation | [17] H. Quan, Y. Guo, R. Li, Q. Su & Y. Chai, “Optimization design and experimental study of vortex pump based on orthogonal test,” Sci. Prog., vol. 103, no. 1, pp. 1–20, Oct. 2019. https://doi.org/10.1177/0036850419881883 | |
dc.relation | [18] Y. Gao, X. Fan & R. Dang, “Numerical characterization of the effects of flow rate on pressure and velocity distribution of pump as turbine,” Current science, vol. 117, no. 1, pp. 57-63, Aug. 2019. https://doi.org/10.18520/cs/v117/i1/57-63 | |
dc.relation | 9 | |
dc.relation | 1 | |
dc.relation | 1 | |
dc.relation | 1 | |
dc.rights | © The author; licensee Universidad de la Costa - CUC. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://revistascientificas.cuc.edu.co/IDEE/article/view/3072 | |
dc.subject | CFD | |
dc.subject | Turbulence models | |
dc.subject | Mesh independence study | |
dc.subject | OpenFOAM | |
dc.subject | Centrifugal pump | |
dc.subject | Modelos de turbulencia | |
dc.subject | Estudio de independencia de malla | |
dc.subject | Bomba centrífuga | |
dc.title | CFD analysis of turbulent flows transported by centrifugal pumps under low Re numbers | |
dc.title | Análisis CFD de flujos turbulentos desplazados por bombas centrífugas con bajo número de Reynolds | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 |