dc.creatorSilva, Jesús
dc.creatorVillareal-González, Reynaldo
dc.creatorVarela, Noel
dc.creatorMaco, José
dc.creatorVillón, Martín
dc.creatorMarín–González, Freddy
dc.creatorPineda Lezama, Omar Bonerge
dc.date2021-01-15T18:14:09Z
dc.date2021-01-15T18:14:09Z
dc.date2021
dc.date.accessioned2023-10-03T19:02:10Z
dc.date.available2023-10-03T19:02:10Z
dc.identifierhttps://hdl.handle.net/11323/7700
dc.identifierhttps://doi.org/10.1007/978-981-15-7234-0_87
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166983
dc.descriptionCancer is not just a disease; it is a set of diseases. Breast cancer is the second most common cancer worldwide after lung cancer, and it represents the most frequent cause of cancer death in women (Thurtle et al. in: PLoS Med 16(3):e1002758, 2019, 1]). If it is diagnosed at an early age, the chances of survival are greater. The objective of this research is to compare the performance of method predictions: (i) Logistic Regression, (ii) K-Nearest Neighbor, (iii) K-means, (iv) Random Forest, (v) Support Vector Machine, (vi) Linear Discriminant Analysis, (vii) Gaussian Naive Bayes, and (viii) Multilayer Perceptron within a cancer database.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relation1. Thurtle DR, Greenberg DC, Lee LS, Huang HH, Pharoah PD, Gnanapragasam VJ (2019) Individual prognosis at diagnosis in nonmetastatic prostate cancer: development and external validation of the PREDICT Prostate multivariable model. PLoS Med 16(3):e1002758. https://doi.org/10.1371/journal.pmed.1002758
dc.relation2. Nima T, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312
dc.relation3. Desautels T, Das R, Calvert J, Trivedi M, Summers C, Wales DJ et al (2017) Prediction of early unplanned intensive care unit read-mission in a UK tertiary care hospital: a cross-sectional machine learning approach. BMJ Open 7:e017199
dc.relation4. Hahsler M, Karpienko R (2017) Visualizing association rules in hieralchical groups. J Bus Econ 87:317–335
dc.relation5. Velikova M, Lucas PJF, Samulski M, Karssemeijer N (2013) On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks. Artif Intell Med 57(1):73–86. https://doi.org/10.1016/J.ARTMED.2012.12.004
dc.relation6. Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform 9:1–10. https://doi.org/10.1186/1471-2105-9-319
dc.relation7. Olivera AR, Roesler V, Iochpe C, Schmidt MI, Vigo Á, Barreto SM, Duncan BB (2017) Comparisonof machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study. Sao Paulo Med J 135(3):234–246. https://doi.org/10.1590/1516-3180.2016.0309010217
dc.relation8. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Proc Comput Sci 151:1201–1206
dc.relation9. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data, June 21018. Springer, Cham, pp 3–11
dc.relation10. Chen T, Chefd’hotel C (2014) Deep learning based automatic immune cell detection for immunohistochemistry images. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 17–24
dc.relation11. Viloria, Amelec, et al. Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 2019, vol. 155, p. 575–580
dc.relation12. Clougherty E, Clougherty J, Liu X, Brown D (2015) Spatial and temporal analysis of sex crimes in Charlottesville, Virginia. In: Proceedings of IEEE systems and information engineering design symposium. IEEE, pp 69–74
dc.relation13. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
dc.relation14. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Asoc 97(457):77–86. https://doi.org/10.1198/016214502753479248
dc.relation15. D’Amico AC, Renshaw AA, Cote K, Hurwitz M, Beard C, Loffredo M et al (2004) Impact of the percentage of positive prostate cores on prostate cancer-specific mortality for patients with low or favorable intermediate-risk disease. J Clin Oncol 22(18):3726–3732 (pmid: 15365069)
dc.relation16. Ontario HQ (2017) Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment. Ont Health Technol Assess Ser 17(6):1–75 (pmid: 28572867)
dc.relation17. Klemann N, Roder MA, Helgstrand JT, Brasso K, Toft BG, Vainer B et al (2017) Risk of prostate cancer diagnosis and mortality in men with a benign initial transrectal ultrasound-guided biopsy set: a population-based study. Lancet Oncol 18(2):221–229 (pmid: 28094199)
dc.relation18. Turner EL, Metcalfe C, Donovan JL, Noble S, Sterne JA, Lane JA et al (2016) Contemporary accuracy of death certificates for coding prostate cancer as a cause of death: is reliance on death certification good enough? A comparison with blinded review by an independent cause of death evaluation committee. Br J Cancer 115(1):90–94 (pmid: 27253172)
dc.relation19. Celi LA, Mark RG, Stone DJ, Montgomery RA (2013) “Big Data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med 187:1157–1160
dc.relation20. Andrea DM, Marco G, Michele G (2016) A formal definition of Big Data based on its essential features. Libr Rev 65:122–135
dc.relation21. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2008) Detecting influenza epidemics using search engine query data. Nature 457:1012
dc.relation22. Feng M, McSparron JI, Kien DT, Stone DJ, Roberts DH, Schwartzstein RM et al (2018) Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database. Intensive Care Med 44:884–892
dc.relation23. Liu WY, Lin SG, Zhu GQ, Poucke SV, Braddock M, Zhang Z et al (2016) Establishment and validation of GV-SAPS II scoring system for non-diabetic critically ill patients. PLoS ONE 11:e0166085
dc.relation24. Calvert J, Mao Q, Hoffman JL, Jay M, Desautels T, Mohamadlou H et al (2016) Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Ann Med Surg (Lond) 11:52–57
dc.relation25. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L et al (2016) Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform 4:e28
dc.relation26. Sandfort V, Johnson AEW, Kunz LM, Vargas JD, Rosing DR (2018) Prolonged elevated heart rate and 90-day survival in acutely ill patients: data from the MIMIC-III database. J Intensive Care Med. https://doi.org/10.1177/0885066618756828 885066618756828
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourcehttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_87
dc.subjectBig data
dc.subjectMachine learning
dc.subjectCancer prediction
dc.titleComparison of bioinspired algorithms applied to cancer database
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución