dc.creatorGómez Múnera, John Anderson
dc.creatorJiménez-Cabas, Javier
dc.creatorDíaz-Charris, Luis David
dc.date2022-10-19T12:57:43Z
dc.date2022-10-19T12:57:43Z
dc.date2022
dc.date.accessioned2023-10-03T19:01:45Z
dc.date.available2023-10-03T19:01:45Z
dc.identifierGómez Múnera, J., Jiménez-Cabas, J., Díaz-Charris, L. (2022). User Interface-Based in Machine Learning as Tool in the Analysis of Control Loops Performance and Robustness. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_16
dc.identifier978-3-031-10538-8
dc.identifierhttps://hdl.handle.net/11323/9571
dc.identifier10.1007/978-3-031-10539-5_16
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier978-3-031-10539-5
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166899
dc.descriptionThe monitoring of control loops in industrial processes is of great importance, considering that the correct operation of the productive procedures is related to the control loops that make up the system. Mostly, industrial processes are composed of a large amount of control loops that interact with each other, that means both are coupled, therefore, if one of the loops does not work properly it can negatively affect the system performance, leading the other loops into setpoints that were not designed for them. It has been found that many responsible causes for poor system performance can be identified by stochastic or deterministic performance indices. These performance indices, from a theoretical perspective, allow making relevant decisions, such as design parameters adjustment of the controllers or actuators maintenance. The most known are the stochastic performance index, it requires only normal operation and knowledge of the process. However, the performance analysis in a lot of cases is not conclusive and can present scale problems. On the contrary, deterministic performance index are easier to interpret, favoring the analysis and deduction of the operator. Nevertheless, it is necessary to perform invasive tests to get them, which makes it impractical.Therefore, this work obtains a deterministic index through a inferential model built with machine learning-based neural networks that use as input the stochastic index acquired throughout recollecting the normal operational data in closed loop and in the knowledge process. furthermore, count with a graphic interface that allows the operator interactively to get performance and robustness values represented in the deterministic indices. The strategy is put on test in a real study case of sensing levels for the industrial control process FESTO® MPS-PA Compact Workstation.
dc.format1 página
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Verlag
dc.publisherGermany
dc.relationComputer Information Systems and Industrial Management;CISIM 2022
dc.relationLecture Notes in Computer Science
dc.relationAhmad, S., Ali, S., Tabasha, R.: The design and implementation of a fuzzy gain-scheduled PID controller for the Festo MPS PA compact workstation liquid level control. Eng. Sci. Technol. Int. J. 23(2), 307–315 (2020). https://doi.org/10.1016/j.jestch.2019.05.014. https://www.sciencedirect.com/science/article/pii/S221509861831615X
dc.relationBezergianni, S., Georgakis, C.: Controller performance assessment based on minimum and open-loop output variance. Control Eng. Pract. 8(7), 791–797 (2000)
dc.relationBishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
dc.relationBonaccorso, G.: Machine Learning Algorithms. Packt Publishing Ltd (2017)
dc.relationBorrero-Salazar, A.A., Cardenas-Cabrera, J.M., Barros-Gutierrez, D.A., Jimenezénez-Cabas, J.A.: A comparison study of MPC strategies based on minimum variance control index performance (2019)
dc.relationBox, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)
dc.relationBustos Pulluquitin, S.P.: Modelación matemática para un control robusto de la planta Festo MPS-PA Compact Workstation mediante la normativa IEC-61499. Ph.D. thesis, Universidad Técnica de Ambato, Ambato, Ecuador (2021). https://repositorio.uta.edu.ec/handle/123456789/32221
dc.relationCardenas-Cabrera, J., Diaz-Charris, L., Torres-Carvajal, A., Castro-Charris, N., Romero-Fandiño, E., Ruiz Ariza, J.D., Jiménez-Cabas, J.: Model predictive control strategies performance evaluation over a pipeline transportation system. J. Control Sci. Eng. 2019 (2019)
dc.relationCostanza, V., Rivadeneira, P.S., Gómez Múnera, J.A.: An efficient cost reduction procedure for bounded-control LQR problems. Comput. Appl. Math. 37(2), 1175–1196 (2018)
dc.relationCostanza, V., Rivadeneira, P.S., Gómez Múnera, J.A.: Numerical treatment of the bounded-control LQR problem by updating the final phase value. IEEE Latin Am. Trans. 14(6), 2687–2692 (2016)
dc.relationDesborough, L., Harris, T.: Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 71(4), 605–616 (1993)
dc.relationDorf, R.C., Bishop, R.H.: Modern Control Systems. Pearson (2011)
dc.relationEriksson, P.: Some aspects of control loop performance monitoring. In: IEEE Conference of Control Applications, Glasgow, UK, 1994 (1994)
dc.relationEttaleb, L.: Control loop performance assessment and oscillation detection. Ph.D. thesis, University of British Columbia (1999)
dc.relationFarenzena, M., Trierweiler, J.: Quantifying the impact of control loop performance, time delay and white-noise over the final product variability. In: Cancun, Mexico: International Symposium on Dynamics and Control of Process Systems (2007)
dc.relationFarenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Ph.D. thesis, Universidade Federal Do Rio Grande Do Sul (2008)
dc.relationGómez-Múnera, J.A., Díaz-Charris, L., Ruiz-Ariza, J., Cárdenas-Cabrera, J., Ro-mero, E., Jiménez-Cabas, J.: Stochastic performance indices to infer deterministic indices through machine learning in the performance analysis of control loops. Adv. Mech. 9(3), 616–626 (2021)
dc.relationGómez Múnera, J.A., Giraldo Quintero, A.: Parallel computing for rolling mill process with a numerical treatment of the LQR problem. Comput. Electron. Sci. Theor. Appli. 1(1), 11–30 (2020)
dc.relationGómez Múnera, J.A., Rivadeneira Paz, P.S., Costanza, V.: A cost reduction procedure for control-restricted nonlinear systems. Int. Rev. Autom. Control (IREACO), 10 (2017)
dc.relationHarris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67(5), 856–861 (1989)
dc.relationHarris, T.J., Boudreau, F., MacGregor, J.F.: Performance assessment of multivariable feedback controllers. Automatica 32(11), 1505–1518 (1996)
dc.relationHarris, T.J., Seppala, C., Desborough, L.: A review of performance monitoring and assessment techniques for univariate and multivariate control systems. J. Process Control 9(1), 1–17 (1999)
dc.relationHaykin, S.: Neural Networks and Learning Machines, 3/E. Pearson Education India, Noida (2010)
dc.relationHuang, B., Shah, S.L.: Performance Assessment of Control Loops: Theory and Applications. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4471-0415-5
dc.relationHuang, B., Shah, S.L., Kwok, E.: Good, bad or optimal? performance assessment of multivariable processes. Automatica 33(6), 1175–1183 (1997)
dc.relationJelali, M.: An overview of control performance assessment technology and industrial applications. Control Eng. Pract. 14(5), 441–466 (2006)
dc.relationJelali, M.: Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4471-4546-2
dc.relationJiménez-Cabas, J., et al.: Robust control of an evaporator through algebraic Riccati equations and D-K iteration. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 731–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_58
dc.relationLópez Guillén, M.E.: Identificación de Sistemas. Aplicación al modelado de un motor de continua
dc.relationMcNabb, C.A., Qin, S.J.: Projection based MIMO control performance monitoring: II–measured disturbances and setpoint changes. J. Process Control 15(1), 89–102 (2005)
dc.relationMoudgalya, K.M.: Digital Control. Wiley, Hoboken (2007)
dc.relationOgata, K.: Modern Control Engineering. Prentice hall (2010)
dc.relationQin, S.J.: Control performance monitoring-a review and assessment. Comput. Chem. Eng. 23(2), 173–186 (1998)
dc.relationRivadeneira, P.S., Gómez Múnera, J.A., Costanza, V.: Dynamic allocation of industrial utilities as an optimal stochastic tracking problem. Chem. Eng. Sci. 160, 121–130 (2017)
dc.relationSmith, C.A., Corripio, A.B.: Principles and Practices of Automatic Process Control. Wiley, Hoboken (2005)
dc.relationZhang, G.P.: A neural network ensemble method with jittered training data for time series forecasting. Inf. Sci. 177(23), 5329–5346 (2007)
dc.relation230
dc.relation214
dc.rights© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://link.springer.com/chapter/10.1007/978-3-031-10539-5_16
dc.subjectControl loop performance
dc.subjectPerformance índices
dc.subjectMachine learning
dc.subjectNeural networks
dc.subjectUser interface
dc.titleUser interface-based in machine learning as tool in the analysis of control loops performance and robustness
dc.typeCapítulo - Parte de Libro
dc.typehttp://purl.org/coar/resource_type/c_3248
dc.typeText
dc.typeinfo:eu-repo/semantics/bookPart
dc.typehttp://purl.org/redcol/resource_type/CAP_LIB
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/coar/version/c_b1a7d7d4d402bcce


Este ítem pertenece a la siguiente institución