dc.creatorMORENO RIOS, ANDREA LILIANA
dc.creatorGutierrez-Suarez, Karol
dc.creatorCarmona, Zenen
dc.creatorGindri Ramos, Claudete
dc.creatorSilva Oliveira, Luis Felipe
dc.date2022-01-25T20:32:17Z
dc.date2022-01-25T20:32:17Z
dc.date2022
dc.date2024
dc.date.accessioned2023-10-03T18:57:46Z
dc.date.available2023-10-03T18:57:46Z
dc.identifier0045-6535
dc.identifierhttps://hdl.handle.net/11323/9007
dc.identifierhttps://doi.org/10.1016/j.chemosphere.2021.132822
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166578
dc.descriptionNonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen (NP), diclofenac, ibuprofen, etc., are widely used for fever and pain relief. NP is one of the most widely consumed drugs in the world, because it is available over the counter in many countries. Many studies have proven that NP is not eliminated in conventional water treatment processes and its biodegradation in the environment is also difficult compared to other drugs. Along these lines, we are aware that both the original compound and its metabolites can be found in different destinations in the environment. To assess the environmental exposure and the risks associated with NP, it is important to understand better the environment where they finally reach, the behavior of its original compounds, its metabolites, and its transformation products. In this sense, the purpose of this review is to summarize the current state of knowledge about the introduction and behavior of NP in the environments they reach and highlight research needs and gaps. Likewise, we present the sources, environmental destinations, toxicology, environmental effects, and quantification methodologies.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAhmad et al., 2018 M.H. Ahmad, M. Fatima, M. Hossain, A.C. Mondal Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats J. Pharm. Anal., 8 (2018), pp. 400-406, 10.1016/j.jpha.2018.04.002
dc.relationAli et al., 2011 S. Ali, J.D. Pimentel, C. Ma Naproxen-induced liver injury Hepatobiliary Pancreat. Dis. Int., 10 (2011), pp. 552-556, 10.1016/S1499-3872(11)60093-3
dc.relationAmos et al., 2019 S.P. Amos, D. Naicker, P.S. Mdluli, L.M. Madikizela Naproxen, ibuprofen, and diclofenac residues in river water, sediments and Eichhornia crassipes of Mbokodweni river in South Africa: an initial screening Environ. Forensics, 20 (2019), pp. 129-138, 10.1080/15275922.2019.1597780
dc.relationArguello-Pérez et al., 2020 M.Á. Arguello-Pérez, E. Ramírez-Ayala, J.A. Mendoza-Pérez, M.M. Monroy-Mendieta, M. Vázquez-Guevara, C. Lezama-Cervantes, E. Godínez-Domínguez, F. de A. Silva-Bátiz, A. Tintos-Gómez Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific, vol. 12, Water, Switzerland (2020), 10.3390/w12102721
dc.relationAshfaq et al., 2017 M. Ashfaq, K.N. Khan, M.S.U. Rehman, G. Mustafa, M.F. Nazar, Q. Sun, J. Iqbal, S.I. Mulla, C.P. Yu Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan Ecotoxicol. Environ. Saf., 136 (2017), pp. 31-39, 10.1016/j.ecoenv.2016.10.029
dc.relationBang et al., 2020 H.J. Bang, H. Lee, Y.K. Park, H. Kim, H.H. Ha, Y.H. Yu, S.J. Kim, S.C. Jung Fabrication of Yb-doped TiO2 using liquid phase plasma process and its photocatalytic degradation activity of naproxen J. Mater. Sci., 55 (2020), pp. 9665-9675, 10.1007/s10853-020-04355-6
dc.relationBilal et al., 2020 M. Bilal, T. Rasheed, S. Mehmood, H. Tang, L.F.R. Ferreira, R.N. Bharagava, H.M.N. Iqbal Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials – a review Chemosphere, 253 (2020), p. 126770, 10.1016/j.chemosphere.2020.126770
dc.relationBjarnason and Thjodleifsson, 1999 I. Bjarnason, B. Thjodleifsson Gastrointestinal toxicity of non-steroidal anti-inflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract Rheumatology, 38 (1999), pp. 24-32, 10.1093/rheumatology/38.suppl_1.24
dc.relationBollapragada, 2016 P. Bollapragada Environmentally Persistent Pharmaceutical Pollutants (EPPPs) in Brisbane River Sediments and Their Relationship to Urbanisation. Science and Engineering Faculty Queensland University of Technology (2016) https://eprints.qut.edu.au/101168/4/Padma_Bollapragada_Thesis.pdf
dc.relationBombardier et al., 2000 C. Bombardier, L. Laine, A. Ricin, D. Shapiro, R. Burgos-Vargas, B. David, R. Day, B.M. Ferraz, C.J. Hawkey, M.C. Hochberg, T.K. Kvien, T.J. Shnitzer Comparison of upper gastrointestinal toxicity of rofecoxib and narpoxen in patients with rheumatoid arthritis NEJM, 23 (2000), pp. 1520-1528, 10.1056/NEJM200011233432103
dc.relationBotero-Coy et al., 2018 A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater Sci. Total Environ., 642 (2018), pp. 842-853, 10.1016/j.scitotenv.2018.06.088
dc.relationBrozinski et al., 2013 J.M. Brozinski, M. Lahti, A. Meierjohann, A. Oikari, L. Kronberg The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant Environ. Sci. Technol., 47 (2013), pp. 342-348, 10.1021/es303013j
dc.relationBrun et al., 2006 G.L. Brun, M. Bernier, R. Losier, K. Doe, P. Jackman, H.-B. Lee Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluentes and receiving waters, and potential for environmental effects as measured by acute and chronic aquatic toxicity Environ. Toxicol. Chem., 25 (2006), pp. 2163-2176, 10.1897/05-426r.1
dc.relationBrutzkus and Shahrokhi, 2020 J.C. Brutzkus, M.V.M. Shahrokhi Naproxen. [Updated 2020 May 24]. in: StatPearls [Internet]. Treasure Island (FL) StatPearls Publishing Jan (2020) https://www.ncbi.nlm.nih.gov/books/NBK525965/
dc.relationCalma and Medina, 2020 M.L. Calma, P.M.B. Medina Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben Environ. Pollut., 266 (2020), 10.1016/j.envpol.2020.115275
dc.relationCleuvers, 2003 M. Cleuvers Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects Toxicol. Lett., 142 (2003), pp. 185-194, 10.1016/S0378-4274(03)00068-7
dc.relationCleuvers, 2004 M. Cleuvers Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid Ecotoxicol. Environ. Saf., 59 (2004), pp. 309-315, 10.1016/S0147-6513(03)00141-6
dc.relationConaghan, 2012 P.G. Conaghan A Turbulent Decade for NSAIDs: Update on Current Concepts of Classification, Epidemiology, Comparative Efficacy, and Toxicity Rheumatol. Int (2012), 10.1007/s00296-011-2263-6
dc.relationDamasceno de Oliveira et al., 2018 L.L. Damasceno de Oliveira, B. Nunes, S.C. Antunes, R. Campitelli-Ramos, O. Rocha Acute and Chronic Effects of Three Pharmaceutical Drugs on the Tropical Freshwater Cladoceran Ceriodaphnia Silvestrii. Water, Air, and Soil Pollut, vol. 229 (2018), 10.1007/s11270-018-3765-6
dc.relationDavies and Anderson, 1997 N.M. Davies, K.E. Anderson Clinical pharmacokinetics of naproxen. Drug disposition Clin. Pharmacokinet., 32 (1997), pp. 268-293, 10.2165/00003088-199732040-00002
dc.relationDe Oliveira et al., 2020 M. De Oliveira, B.E.F. Frihling, J. Velasques, F.J.C.M. Filho, P.S. Cavalheri, L. Migliolo Pharmaceuticals residues and xenobiotics contaminants: occurrence, analytical techniques and sustainable alternatives for wastewater treatment Sci. Total Environ., 705 (2020), p. 135568, 10.1016/j.scitotenv.2019.135568
dc.relationDȩbska et al., 2004 J. Dȩbska, A. Kot-Wasik, J. Namieśnik Fate and analysis of pharmaceutical residues in the aquatic environment Crit. Rev. Anal. Chem., 34 (2004), pp. 51-67, 10.1080/10408340490273753
dc.relationDellaGreca et al., 2003 M. DellaGreca, M. Brigante, M. Isidori, A. Nardelli, L. Previtera, M. Rubino, F. Temussi Phototransformation and ecotoxicity of the drug Naproxen-Na Environ. Chem. Lett., 1 (2003), pp. 237-241, 10.1007/s10311-003-0045-4
dc.relationDing et al., 2017 T. Ding, K. Lin, B. Yang, M. Yang, J. Li, W. Li, J. Gan Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity Bioresour. Technol., 238 (2017), pp. 164-173, 10.1016/j.biortech.2017.04.018
dc.relationDu et al., 2018 E. Du, J. Li, S. Zhou, L. Zheng, X. Fan Transformation of naproxen during the chlorination process: products identification and quantum chemistry validation Chemosphere, 211 (2018), pp. 1007-1017, 10.1016/j.chemosphere.2018.08.036
dc.relationDurán-Álvarez et al., 2015 J.C. Durán-Álvarez, B. Prado, D. González, Y. Sánchez, B. Jiménez-Cisneros Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - results of laboratory scale experiments Sci. Total Environ., 538 (2015), pp. 350-362, 10.1016/j.scitotenv.2015.08.028
dc.relationEbele et al., 2017 A.J. Ebele, M.A.E. Abdallah, S. Harrad Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment Emerging Contaminants, 3 (2017), pp. 1-16, 10.1016/j.emcon.2016.12.004
dc.relationElhenawy et al., 2019 A.A. Elhenawy, L.M. AL-Harbi, M.A. El-Gazzar, M.M. Khowdiary, A. ouidate, A.M. Alosaimi, A. elhamid Salim Naproxenylamino acid derivatives: design, synthesis, docking, QSAR and anti-inflammatory and analgesic activity Biomed. Pharmacother., 116 (2019), p. 109024, 10.1016/j.biopha.2019.109024
dc.relationFalany et al., 2005 C.N. Falany, P. Ström, S. Swedmark Sulphation of o-desmethylnaproxen and related compounds by human cytosolic sulfotransferases J. Clin. Pharmacol., 60 (2005), pp. 632-640, 10.1111/j.1365-2125.2005.02506.x
dc.relationFatta et al., 2007 D. Fatta, A. Achilleos, A. Nikolaou, S. Meriç Analytical methods for tracing pharmaceutical residues in water and wastewater TrAC Trends Anal. Chem. (Reference Ed.), 26 (2007), pp. 515-533, 10.1016/j.trac.2007.02.001
dc.relationFerrey et al., 2018 M.L. Ferrey, M.C. Hamilton, W.J. Backe, K.E. Anderson Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation Sci. Total Environ., 612 (2018), pp. 1488-1497, 10.1016/j.scitotenv.2017.06.201
dc.relationFent et al., 2006 K. Fent, A.A. Weston, D. Calminada Ecotoxicology of human pharmaceuticals Aquat. Toxicol., 76 (2) (2006), pp. 122-159, 10.1016/j.aquatox.2005.09.009
dc.relationGarcía-Medina et al., 2015 A. Lucero García-Medina, G.M. Marcela, G.M. Sandra, G.O.L. Manuel, R.E. Celene Naproxen-enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca Water Air Soil Pollut., 226 (2015), 10.1007/s11270-015-2454-y
dc.relationGheorghe et al., 2016 S. Gheorghe, J. Petre, I. Lucaciu, C. Stoica, M. Nita-Lazar Risk screening of pharmaceutical compounds in Romanian aquatic environment Environ. Monit. Assess., 188 (2016), 10.1007/s10661-016-5375-3
dc.relationGogoi et al., 2018 A. Gogoi, P. Mazumder, V.K. Tyagi, G.G. Tushara Chaminda, A.K. An, M. Kumar Occurrence and fate of emerging contaminants in water environment: a review Groundw. Sustain. Dev., 6 (2018), pp. 169-180, 10.1016/j.gsd.2017.12.009
dc.relationGómez-Oliván et al., 2014 L.M. Gómez-Oliván, M. Galar-Martínez, S. García-Medina, A. Valdés-Alanís, H. Islas-Flores, N. Neri-Cruz Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna Drug Chem. Toxicol., 37 (2014), pp. 391-399, 10.3109/01480545.2013.870191
dc.relationGórny et al., 2019 D. Górny, U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain Ecotoxicol. Environ. Saf., 167 (2019), pp. 505-512, 10.1016/j.ecoenv.2018.10.067
dc.relationGrenni et al., 2018 P. Grenni, S. Bagnis, S. Comber Naproxen in the environment J. Horner (Ed.), Naproxen: Chemistry, Clinical Aspects and Effects, 978-1-53614-129-0, Nova Science Publisher, Inc. (2018), pp. 67-101 (Chapter 3) https://www.researchgate.net/profile/Paola-Grenni/publication/326468096_Naproxen_in_the_Environment/links/5b4f96c445851507a7ad5e72/Naproxen-in-the-Environment.pdf
dc.relationGrenni et al., 2014 P. Grenni, L. Patrolecco, N. Ademollo, M. Di Lenola, A. Barra Caracciolo Capability of the natural microbial community in a river water ecosystem to degrade the drug naproxen Environ. Sci. Pollut. Res., 21 (2014), pp. 13470-13479, 10.1007/s11356-014-3276-y
dc.relationGrosser et al., 2017 T. Grosser, E. Ricciotti, A. FG The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs Trends Pharmacol. Sci., 38 (2017), pp. 733-748, 10.1016/j.tips.2017.05.008
dc.relationHe et al., 2017 B. shu He, J. Wang, J. Liu, X. min Hu Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: necessity and opportunities Chemosphere, 181 (2017), pp. 178-189, 10.1016/j.chemosphere.2017.04.084 2017
dc.relationIsidori et al., 2005 M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera, M. Rubino Ecotoxicity of naproxen and its phototransformation products Sci. Total Environ., 348 (2005), pp. 93-101, 10.1016/j.scitotenv.2004.12.068
dc.relationIzadi et al., 2020 P. Izadi, P. Izadi, R. Salem, S.A. Papry, S. Magdouli, R. Pulicharla, S.K. Brar Non-steroidal anti-inflammatory drugs in the environment: where were we and how far we have come? Environ. Pollut., 267 (2020), p. 115370, 10.1016/j.envpol.2020.115370
dc.relationJallouli et al., 2016 N. Jallouli, K. Elghniji, O. Hentati, A.R. Ribeiro, A.M.T. Silva, M. Ksibi UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment J. Hazard Mater., 304 (2016), pp. 329-336, 10.1016/j.jhazmat.2015.10.045
dc.relationJiang et al., 2013 J.Q. Jiang, Z. Zhou, V.K. Sharma Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water - a review from global views Microchem. J., 110 (2013), pp. 292-300, 10.1016/j.microc.2013.04.014
dc.relationJones et al., 2004 O.A.H. Jones, N. Voulvoulis, J.N. Lester Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment Crit. Rev. Toxicol., 34 (2004), pp. 335-350, 10.1080/10408440490464697
dc.relationKakisaka et al., 2018 K. Kakisaka, Y. Yoshida, Y. Suzuki, T. Sato, H. Kuroda, A. Miyasaka, Y. Takikawa Serum markers for mitochondrial dysfunction and cell death are possible predictive indicators for drug-induced liver injury by direct acting antivirals Hepatol. Res., 48 (2018), pp. 78-86, 10.1111/hepr.12893
dc.relationKasprzyk-Hordern et al., 2008 B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK Water Res., 42 (2008), pp. 3498-3518, 10.1016/j.watres.2008.04.026 In this issue
dc.relationKeng et al., 2017 C.L. Keng, Y.C. Lin, W.L. Tseng, C.Y. Lu Design of peptide-based probes for the microscale detection of reactive oxygen species Anal. Chem., 89 (2017), pp. 10883-10888, 10.1021/acs.analchem.7b02544
dc.relationKibuye et al., 2019 F.A. Kibuye, H.E. Gall, K.R. Elkin, B. Ayers, T.L. Veith, M. Miller, S. Jacob, K.R. Hayden, J.E. Watson, H.A. Elliott Fate of pharmaceuticals in a spray-irrigation system: from wastewater to groundwater Sci. Total Environ., 654 (2019), pp. 197-208, 10.1016/j.scitotenv.2018.10.442
dc.relationKosma et al., 2016 C.I. Kosma, D.A. Lambropoulou, T.A. Albanis Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: a review Sci. Total Environ., 569–570 (2016), pp. 732-750, 10.1016/j.scitotenv.2016.06.160
dc.relationKowalski and Makowska, 2015 M.L. Kowalski, J.S. Makowska Seven steps to the diagnosis of NSAIDs hypersensitivity: how to apply a new classification in real practice? Allergy, Allergy Asthma Immunol. Res., 7 (2015), pp. 312-320, 10.4168/aair.2015.7.4.312
dc.relationKumirska et al., 2019 J. Kumirska, P. Łukaszewicz, M. Caban, N. Migowska, A. Plenis, A. Białk-Bielińska, M. Czerwicka, F. Qi, S. Piotr Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection Chemosphere, 232 (2019), pp. 232-242, 10.1016/j.chemosphere.2019.05.164
dc.relationKwak et al., 2018 K. Kwak, K. Ji, Y. Kho, P. Kim, J. Lee, J. Ryu, K. Choi Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay Chemosphere, 204 (2018), pp. 156-162, 10.1016/j.chemosphere.2018.04.035
dc.relationLi et al., 2016 Q. Li, P. Wang, L. Chen, H. Gao, L. Wu Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages Environ. Sci. Pollut. Res., 23 (2016), pp. 18832-18841, 10.1007/s11356-016-7092-4
dc.relationLi, 2014 W.C. Li Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil Environ. Pollut., 187 (2014), pp. 193-201, 10.1016/j.envpol.2014.01.015
dc.relationLópez-Pacheco et al., 2019 I.Y. López-Pacheco, A. Silva-Núñez, C. Salinas-Salazar, A. Arévalo-Gallegos, L.A. Lizarazo-Holguin, D. Barceló, H.M.N. Iqbal, R. Parra-Saldívar Anthropogenic contaminants of high concern: existence in water resources and their adverse effects Sci. Total Environ., 690 (2019), pp. 1068-1088, 10.1016/j.scitotenv.2019.07.052
dc.relationLucero et al., 2015 G.M.A. Lucero, G.M. Marcela, G.M. Sandra, G.O.L. Manuel, R.E. Celene Naproxen-Enriched Artificial Sediment Induces Oxidative Stress and Genotoxicity in Hyalella Azteca. Water, Air, and Soil Pollut, vol. 226 (2015), 10.1007/s11270-015-2454-y
dc.relationMadikizela and Chimuka, 2016 L.M. Madikizela, L. Chimuka Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction J. Pharmaceut. Biomed. Anal., 128 (2016), pp. 210-215, 10.1016/j.jpba.2016.05.037
dc.relationMadikizela and Ncube, 2021 L.M. Madikizela, S. Ncube Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment: what is known and the missing information? Chemosphere, 280 (2021), p. 130688, 10.1016/j.chemosphere.2021.130688
dc.relationMartinez-Sena et al., 2016 T. Martinez-Sena, S. Armenta, M. de la Guardia, F.A. Esteve-Turrillas Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extrDetermination of non-steroidal anti-inflammatory drugs in water and urine using seleaction and liquid chromatography J. Pharmaceut. Biomed. Anal., 131 (2016), pp. 48-53, 10.1016/j.jpba.2016.08.006
dc.relationMazaheri et al., 2019 M. Mazaheri, W. Lin, S. Clifford, D. Yue, Y. Zhai, M. Xu, V. Rizza, L. Morawska Characteristics of school children's personal exposure to ultrafine particles in Heshan, Pearl River Delta, China – a pilot study Environ. Int., 132 (2019), p. 105134, 10.1016/j.envint.2019.105134
dc.relationMelvin, 2016 S.D. Melvin Oxidative stress, energy storage, and swimming performance of Limnodynastes peronii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout development Chemosphere, 150 (2016), pp. 790-797, 10.1016/j.chemosphere.2015.09.034
dc.relationMezzelani et al., 2016 M. Mezzelani, S. Gorbi, Z. Da Ros, D. Fattorini, G. d'Errico, M. Milan, L. Bargelloni, F. Regoli Ecotoxicological potential of non-steroidal anti-inflammatory drugs (NSAIDs) in marine organisms: bioavailability, biomarkers and natural occurrence in Mytilus galloprovincialis Mar. Environ. Res., 121 (2016), pp. 31-39, 10.1016/j.marenvres.2016.03.005
dc.relationMiller et al., 2018 T.H. Miller, N.R. Bury, S.F. Owen, J.I. MacRae, L.P. Barron A review of the pharmaceutical exposome in aquatic fauna Environ. Pollut., 239 (2018), pp. 129-146, 10.1016/j.envpol.2018.04.012
dc.relationMulkiewicz et al., 2021 E. Mulkiewicz, D. Wolecki, K. Świacka, J. Kumirska, P. Stepnowski, M. Caban Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms Sci. Total Environ., 791 (2021), p. 148251, 10.1016/j.scitotenv.2021.148251
dc.relationNäslund et al., 2020 J. Näslund, N. Asker, J. Fick, D.G.J. Larsson, L. Norrgren Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac Aquat. Toxicol., 227 (2020), p. 105583, 10.1016/j.aquatox.2020.105583
dc.relationNeal and Moore, 2017 A.E. Neal, P.A. Moore Mimicking natural systems: changes in behavior as a result of dynamic exposure to naproxen Ecotoxicol Environ. Saf., 135 (2017), pp. 347-357, 10.1016/j.ecoenv.2016.10.015
dc.relationNeale et al., 2019 P.A. Neale, A. Branch, S.J. Khan, F.D.L. Leusch Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery Sci. Total Environ., 694 (2019), p. 133659, 10.1016/j.scitotenv.2019.133659
dc.relationNgubane et al., 2019 N.P. Ngubane, D. Naicker, S. Ncube, L. Chimuka, L.M. Madikizela Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: a case of northern Durban in KwaZulu–Natal Province of South Africa Region. Stud. Mar. Sci., 29 (2019), p. 100675, 10.1016/j.rsma.2019.100675
dc.relationNishi et al., 2015 I. Nishi, T. Kawakami, S. Onodera Monitoring the concentrations of nonsteroidal anti-inflammatory drugs and cyclooxygenase-inhibiting activities in the surface waters of the Tone Canal and Edo River Basin J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 50 (2015), pp. 1108-1115, 10.1080/10934529.2015.1047647
dc.relationNoguera-Oviedo and Aga, 2016 K. Noguera-Oviedo, D.S. Aga Lessons learned from more than two decades of research on emerging contaminants in the environment J. Hazard Mater., 316 (2016), pp. 242-251, 10.1016/j.jhazmat.2016.04.058
dc.relationPapaioannou et al., 2019 D. Papaioannou, P.H. Koukoulakis, D. Lambropoulou, M. Papageorgiou, I.K. Kalavrouziotis The dynamics of the pharmaceutical and personal care product interactive capacity under the effect of artificial enrichment of soil with heavy metals and of wastewater reuse Sci. Total Environ., 662 (2019), pp. 537-546, 10.1016/j.scitotenv.2019.01.111
dc.relationParolini, 2020 M. Parolini Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: a review Sci. Total Environ., 740 (2020), p. 140043, 10.1016/j.scitotenv.2020.140043
dc.relationPeña-Guzmán et al., 2019 C. Peña-Guzmán, S. Ulloa-Sánchez, K. Mora, R. Helena-Bustos, E. Lopez-Barrera, J. Alvarez, M. Rodriguez-Pinzón Emerging pollutants in the urban water cycle in Latin America: a review of the current literature J. Environ. Manag., 237 (2019), pp. 408-423, 10.1016/j.jenvman.2019.02.100
dc.relationPetrovic, 2014 M. Petrovic Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples Trends Environ. Anal. Chem., 1 (2014), pp. e25-e33, 10.1016/j.teac.2013.11.004
dc.relationPiazuelo and Lanas, 2015 E. Piazuelo, A. Lanas NSAIDS and gastrointestinal cancer Prostag. Other Lipid Mediat., 120 (2015), pp. 91-96, 10.1016/j.prostaglandins.2015.06.001
dc.relationRicciotti and Fitzgerald, 2011 E. Ricciotti, G.A. Fitzgerald Prostaglandins and inflammation Arterioscler. Thromb. Vasc. Biol., 31 (2011), pp. 986-1000, 10.1161/ATVBAHA.110.207449
dc.relationRivera-Utrilla et al., 2013 J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez Pharmaceuticals as emerging contaminants and their removal from water. A review Chemosphere, 93 (2013), pp. 1268-1287, 10.1016/j.chemosphere.2013.07.059
dc.relationRovensky and Payer, 2009 Non-steroidal anti-inflammatory drugs (NSAIDs) — classification J. Rovensky, J. Payer (Eds.), Dictionary Rheumatol. (2009), pp. 144-145, 10.1007/978-3-211-79280-3_797
dc.relationRuschitzka et al., 2017 F. Ruschitzka, J.S. Borer, H. Krum, A.J. Flammer, N.D. Yeomans, P. LIbby, T.T. Luscher, D.H. Solomon, M.E. Husni, D.Y. Graham, D.A. Davey, L.M. Wisniewski, V. Menon, R. Fayyad, B. Beckerman, D. Lorga, A.M. Lincoff, S.E. Nissen Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (ProspectiveRandomized evaluation of celecoxib integrated safety versus ibuprofen or naproxen ambulatory blood pressure measurement). Trial Eur. Heart J., 21 (38) (2017), pp. 3282-3292 https://doi.org/doi:10.1093/eurheartj/ehx508
dc.relationSanjuan-Reyes et al., 2013 N. Sanjuan-Reyes, L.M. Gómez-Oliván, M. Galar-Martínez, P. Vieyra-Reyes, S. García-Medina, H. Islas-Flores, N. Neri-Cruz Effluent from an NSAID-Manufacturing Plant in Mexico Induces Oxidative Stress on Cyprinus Carpio. Water, Air, and Soil Pollut, vol. 224 (2013), 10.1007/s11270-013-1689-8
dc.relationSantos et al., 2010 L.H.M.L.M. Santos, A.N. Araújo, A. Fachini, A. Pena, C. Delerue-Matos, M.C.B.S.M. Montenegro Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment J. Hazard Mater., 175 (2010), pp. 45-95, 10.1016/j.jhazmat.2009.10.100
dc.relationSchmidt and Redshaw, 2015 W. Schmidt, C.H. Redshaw Evaluation of biological endpoints in crop plants after exposure to non-steroidal anti-inflammatory drugs (NSAIDs): implications for phytotoxicological assessment of novel contaminants Ecotoxicol. Environ. Saf., 112 (2015), pp. 212-222, 10.1016/j.ecoenv.2014.11.008
dc.relationSchwarz et al., 2017 S. Schwarz, H. Schmieg, M. Scheurer, H.R. Köhler, R. Triebskorn Impact of the NSAID diclofenac on survival, development, behaviour and health of embryonic and juvenile stages of brown trout, Salmo trutta f fario. Sci. Total Environ., 607–608 (2017), pp. 1026-1036, 10.1016/j.scitotenv.2017.07.042
dc.relationSehonova et al., 2017 P. Sehonova, L. Plhalova, J. Blahova, V. Doubkova, M. Prokes, F. Tichy, E. Fiorino, C. Faggio, Z. Svobodova Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages Chemosphere, 188 (2017), pp. 414-423, 10.1016/j.chemosphere.2017.08.151
dc.relationSilver et al., 2018 M. Silver, S. Selke, P. Balsaa, A. Wefer-Roehl, C. Kübeck, C. Schüth Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge Sci. Total Environ., 642 (2018), pp. 914-924, 10.1016/j.scitotenv.2018.06.120
dc.relationŚliwka-Kaszyńska et al., 2019 M. Śliwka-Kaszyńska, A. Jakimska-Nagórska, A. Wasik, A. Kot-Wasik Phototransformation of three selected pharmaceuticals, naproxen, 17α-Ethinylestradiol and tetracycline in water: identification of photoproducts and transformation pathways Microchem. J., 148 (2019), pp. 673-683, 10.1016/j.microc.2019.05.036
dc.relationSriuttha et al., 2018 P. Sriuttha, B. Sirichanchuen, U. Permsuwan Hepatotoxicity of nonsteroidal anti-inflammatory drugs: a systematic review of randomized controlled trials Int. J. Hepatol (2018), 10.1155/2018/5253623
dc.relationStancová et al., 2015 V. Stancová, A. Ziková, Z. Svobodová, W. Kloas Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio) Environ. Toxicol. Pharmacol., 40 (2015), pp. 343-348, 10.1016/j.etap.2015.07.009
dc.relationStraub et al., 2007 O.R. Straub, K.M. Stewart, F. Hoffmann-La Roche Hazard/Risk Assessment Deterministic and probabilistic acute-based environmental risk assessment for western Europe Environ. Toxicol. Chem., 26 (2007), pp. 795-806, 10.1897/06-212R.1
dc.relationSu et al., 2020 C. Su, Y. Cui, D. Liu, H. Zhang, Y. Baninla Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: which chemicals are the prioritized ones? Sci. Total Environ., 720 (2020), p. 137652, 10.1016/j.scitotenv.2020.137652
dc.relationSvobodníková et al., 2020 L. Svobodníková, M. Kummerová, Š. Zezulka, P. Babula, K. Sendecká Root response in Pisum sativum under naproxen stress: morpho-anatomical, cytological, and biochemical traits Chemosphere, 258 (2020), 10.1016/j.chemosphere.2020.127411
dc.relationTarpani and Azapagic, 2018 R.R.Z. Tarpani, A. Azapagic A methodology for estimating concentrations of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants and in freshwaters Sci. Total Environ., 622–623 (2018), pp. 1417-1430, 10.1016/j.scitotenv.2017.12.059
dc.relationTenorio-Chávez et al., 2020 P. Tenorio-Chávez, M. Cerro-López, L.I. Castro-Pastrana, M.M. Ramírez-Rodrigues, J.M. Orozco-Hernández, L.M. Gómez-Oliván Effects of effluent from a hospital in Mexico on the embryonic development of zebrafish, Danio rerio Sci. Total Environ., 727 (2020), 10.1016/j.scitotenv.2020.138716
dc.relationTheken, 2018 K.N. Theken Variability in analgesic response to non-steroidal anti-inflammatory drugs Prostag. Other Lipid Mediat., 139 (2018), pp. 63-70, 10.1016/j.prostaglandins.2018.10.005
dc.relationTodd et al., 1990 P.A. Todd, S.P. Clissold, S. Wales, M. Goldberg, J. Sargent Drug evaluation naproxen A reappraisal of its pharmacology, and therapeutic use in rheumatic diseases and pain states Drugs, 40 (1990), pp. 91-137, 10.2165/00003495-199040010-00006
dc.relationTu et al., 2019 N. Tu, Y. Liu, R. Li, W. Lv, G. Liu, D. Ma Experimental and theoretical investigation on photodegradation mechanisms of naproxen and its photoproducts Chemosphere, 227 (2019), pp. 142-150, 10.1016/j.chemosphere.2019.04.055
dc.relationVan Gelder et al., 2010 M.M.H.J. Van Gelder, I.A.L.M. van Rooij, R.K. Miller, G.A. Zielhuis, L.T.W. de Jong-van den Berg, N. Roeleveld Teratogenic mechanisms of medical drugs Hum. Reprod., 16 (2010), pp. 378-394, 10.1093/humupd/dmp052
dc.relationVostinaru, 2017 O. Vostinaru Adverse Effects and Drug Interactions of the Non‐Steroidal Anti‐Inflammatory Drugs, in: Nonsteroidal Anti-inflammatory Drugs InTech (2017), 10.5772/intechopen.68198
dc.relationVulava et al., 2016 V.M. Vulava, W.C. Cory, V.L. Murphey, C.Z. Ulmer Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water Sci. Total Environ., 565 (2016), pp. 1063-1070, 10.1016/j.scitotenv.2016.05.132
dc.relationWatanabe et al., 2016 H. Watanabe, I. Tamura, R. Abe, H. Takanobu, A. Nakamura, T. Suzuki, A. Hirose, T. Nishimura, N. Tatarazako Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish) Environ. Toxicol. Chem., 35 (2016), pp. 996-1006, 10.1002/etc.3285
dc.relationWojcieszyńska and Guzik, 2020 D. Wojcieszyńska, U. Guzik Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation Appl. Microbiol. Biotechnol., 104 (2020), pp. 1849-1857, 10.1007/s00253-019-10343-x
dc.relationWolecki et al., 2019 D. Wolecki, M. Caban, K. Pazdro, E. Mulkiewicz, P. Stepnowski, J. Kumirska Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus Talanta, 200 (2019), pp. 316-323, 10.1016/j.talanta.2019.03.062
dc.relationXu et al., 2019 C. Xu, L. Niu, H. Guo, X. Sun, L. Chen, W. Tu, Q. Dai, J. Ye, W. Liu, J. Liu Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID)naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations Sci. Total Environ., 676 (2019), pp. 387-395, 10.1016/j.scitotenv.2019.04.323
dc.relationYamindago et al., 2019 A. Yamindago, N. Lee, S. Woo, S. Yum Transcriptomic profiling of Hydra magnipapillata after exposure to naproxen Environ. Toxicol. Pharmacol., 71 (2019), p. 103215, 10.1016/j.etap.2019.103215
dc.relationYang et al., 2017 Y. Yang, S.O. Yong, K.H. Kim, E.E. Kwon, Y.F. Tsang Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review Sci. Total Environ., 596–597 (2017), pp. 303-320, 10.1016/j.scitotenv.2017.04.102
dc.relationZhao et al., 2010 J.L. Zhao, G.G. Ying, Y.S. Liu, F. Chen, J.F. Yang, L. Wang, X.B. Yang, J.L. Stauber, M.S.J. Warne Ocurrence and a secreening-level risk assesment of human pharmaceuticals in the PEarl River system, south China Environ. Toxicol. Chem., 29 (2010), pp. 1377-1384, 10.1002/etc.161
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceChemosphere
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S004565352103294X?via%3Dihub
dc.subjectNaproxen
dc.subjectSources
dc.subjectToxicity
dc.subjectEnvironmental effects
dc.subjectQuantification methodology
dc.titlePharmaceuticals as emerging pollutants: case naproxen an overview
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución