Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica

dc.creatorFlorez-Marulanda, Juan-Fernando
dc.creatorOrtega Alegria, Daniel Rodrigo
dc.date2023-06-01T22:16:10Z
dc.date2023-06-01T22:16:10Z
dc.date2021
dc.date.accessioned2023-10-03T18:57:05Z
dc.date.available2023-10-03T18:57:05Z
dc.identifierD. Ortega Alegria & J. Flórez Marulanda, “Performance of biodiesel production by means of Ultrasonic Transesterification”, INGE CUC, vol. 7, no.2, pp. 51–64. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.06
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10208
dc.identifier10.17981/ingecuc.17.2.2021.06
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC – Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166467
dc.descriptionIntroduction— In recent years, the use of renewable energies and eco-friendly fuels has increased, among which one of the best performance is biodiesel; the paper shows an upgrade in the efficiency and effectiveness laboratory level’s biodiesel obtaining. Objective— Evaluating the production of biodiesel employing ultrasound is presented, leading to improve the response time and efficiency of the reaction, concerning the conventional method using only temperature. Methodology— In the transesterification process, castor oil, methanol, and potassium hydroxide are used, obtaining biodiesel and glycerin. A factorial design with two levels for transit time, mixing temperature, and ultrasound intensity were applied in an instrumented scale reactor to control these variables. Results— In the tests, values close to the reference stoichiometric value of the reaction were obtained. The statistic indicates a normal behavior of data, and identifies it as a factor of incidence in the efficiency of the reaction to the intensity of the ultrasound, concerning the response time of the reaction, the mixing temperature and the intensity of ultrasound. Conclusions— The efficiency of the reaction concerning the studied factors, it only depends on the ultrasound obtaining up to 95.7% of the stoichiometric value; and the response time of the reaction depends on the temperature and ultrasound, obtaining times of formation of product four times faster.
dc.descriptionIntroducción— En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel; el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo— Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura. Metodología— En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables. Resultados— En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido. Conclusiones— La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] F. C. De Oliveira & S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” RSER, vol. 75, pp. 168–179, Aug. 2017. https://doi.org/10.1016/j.rser.2016.10.060
dc.relation[2] M. Mubarak, A. Shaija & T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res, vol. 7, pp. 117–123, Jan. 2015. https://doi.org/10.1016/j.algal.2014.10.008
dc.relation[3] H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” RSER, vol. 67, pp. 1225–1236, Jan. 2017. https://doi.org/10.1016/j.rser.2016.09.036
dc.relation[4] P. Verma, M. P. Sharma & G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” RSER, vol. 56, pp. 319–333, Apr. 2016. https://doi.org/10.1016/j.rser.2015.11.048
dc.relation[5] B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar & S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” RSER, vol. 38, pp. 368–382, Oct. 2014. https://doi. org/10.1016/j.rser.2014.05.084
dc.relation[6] I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt J Pet, vol. 25, no. 1, pp. 21–31, Mar. 2016. https://doi. org/10.1016/j.ejpe.2015.06.007
dc.relation[7] A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges & N. T. Machado, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind Crops Prod, vol. 91, pp. 32–43, 30 Nov. 2016. https://doi.org/10.1016/j.indcrop.2016.06.033
dc.relation[8] A. H. M. Fauzi, N. A. S. Amin & R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl Energy, vol. 114, pp. 809–818, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.10.011
dc.relation[9] O. Farobie & Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bior Tech, vol. 191, pp. 306–311, Sep. 2015. https://doi.org/10.1016/j.biortech.2015.04.102
dc.relation[10] P. Verma & M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” RSER, vol. 62, pp. 1063–1071, 2016. https://doi.org/10.1016/j.rser.2016.04.054
dc.relation[11] V. K. Aniya, R. K. Muktham, K. Alka & B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 1 Dec. 2015. https://doi.org/10.1016/j.fuel.2015.08.042
dc.relation[12] L. S. Keong, D. S. Patle, S. R. Shukor & Z. Ahmad, “IOP Conference Series: Materials Science and Engineering, 2016,” IOP Conf Ser: Mater Sci Eng, vol. 121, no. 1, pp. 1–7, 2007. https://doi. org/10.1088/1757-899X/121/1/012007
dc.relation[13] H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int J Eng Innov Res, vol. 5, no. 3, pp. 217–219, 2016. Available from https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_2043_FINAL.pdf
dc.relation[14] M. del C. Ortiz, P. García, L. M. Lagunes, M. I. Arregoitia, R. García & M. A. León, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ, vol. 26, no. 5, pp. 3–10, 2016. https://doi.org/10.15174/au.2016.910
dc.relation[15] K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ, vol. 61, no. 6, pp. 494–, 1984. https://doi.org/10.1021/ed061p494
dc.relation[16] H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila & H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop Subtrop Agroecosyst, vol. 16, no. 3, pp. 325–339, Sep.-Dic. 2013. Available: https://www.revista. ccba.uady.mx/ojs/index.php/TSA/article/view/1469
dc.relation[17] M. Kouzu & J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.09.015
dc.relation[18] N. Sharma, U. K. Sharma & E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech Org Synth Med Chem, vol. 17, pp. 441–468, Jan. 2018. https://doi. org/10.1002/9781119288152.ch17
dc.relation[19] M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz & D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J Am Chem Soc, vol. 139, no. 15, pp. 5431–5436, 2017. https://doi.org/10.1021/jacs.7b00689
dc.relation[20] J. M. Berrío, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev CITECSA, vol. 8, no. 13, pp. 15–23, 2017. Available: https://revistas.unipaz.edu.co/index.php/revcitecsa/article/view/135
dc.relation[21] H. Hamze, M. Akia & F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf Environ Prot, vol. 94, pp. 1–10, Mar. 2015. https:// doi.org/10.1016/j.psep.2014.12.005
dc.relation[22] J. M. Marchetti, V. U. Miguel & A. F. Errazu, “Possible methods for biodiesel production,” RSER, vol. 11, no. 6, pp. 1300–1311, Aug. 2007. https://doi.org/10.1016/j.rser.2005.08.006
dc.relation[23] V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng & N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain Chem Process, vol. 1, no. 5, pp. 1–31, 2013. https://doi. org/10.1186/2043-7129-1-5
dc.relation[24] J. Luo, Z. Fang & R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog Energy Combust Sci, vol. 41, pp. 56–93, Apr. 2014. https://doi.org/10.1016/j.pecs.2013.11.001
dc.relation[25] T. Issariyakul & A. K. Dalai, “Biodiesel from vegetable oils,” RSER, vol. 31, pp. 446–471, Mar. 2014. https://doi.org/10.1016/j.rser.2013.11.001
dc.relation[26] V. B. Veljković, I. B. Banković-Ilić & O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” RSER, vol. 49, pp. 500–516, Sep. 2015. https://doi. org/10.1016/j.rser.2015.04.097
dc.relation[27] U. Schuchardt, R. Sercheli & R. M. Vargas, “Transesterification of vegetable oils: a review,” J Braz Chem Soc, vol. 9, no. 3, pp. 199–210, May. 1998. https://doi.org/10.1590/S0103-50531998000300002
dc.relation[28] C. A. G. Quispe, C. J. R. Coronado & J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” RSER, vol. 27, pp. 475–493, Nov. 2013. https://doi. org/10.1016/j.rser.2013.06.017
dc.relation[29] S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah & A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers Manag, vol. 91, pp. 149–157, Feb. 2015. https://doi.org/10.1016/j.enconman.2014.12.009
dc.relation[30] J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues & M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl Catal A Gen, vol. 490, pp. 50–56, Jan. 2015. https://doi.org/10.1016/j.apcata.2014.10.050
dc.relation[31] A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma & M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew Sustain Energy Rev, vol. 43, pp. 331–351, Mar. 2015. https://doi.org/10.1016/j.rser.2014.11.047
dc.relation[32] A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki & S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” RSER, vol. 16, no. 4, pp. 2070–2093, May. 2012. https://doi.org/10.1016/j.rser.2012.01.003
dc.relation[33] J. F. Florez Marulanda & D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019. https://doi. org/10.15446/dyna.v86n211.78518
dc.relation[34] K. S. Suslick, “The chemical effects of ultrasound,” Sci Am, vol. 260, no. 2, pp. 80–86, Feb. 1989. Available: https://suslick.scs.illinois.edu/documents/sciamer8980.pdf
dc.relation[35] D. C. Montgomery,Diseño y análisis de experimentos, CDMX.: Limusa Wiley, 2008.
dc.relation[36] W. M. Mendenhall, T. L. Sincich & N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual, 6th Edition. BR., CL., USA.: Chapman and Hall/CRC, 2016. https://doi. org/10.1201/b19628
dc.relation[37] M. Berrios, M. C. Gutiérrez, M. A. Martín & A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process Technol, vol. 90, no. 12, pp. 1447–1451, Dec. 2009. https://doi.org/10.1016/j.fuproc.2009.06.026
dc.relation[38] G. Vicente, A. Coteron, M. Martinez & J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind Crops Prod, vol. 8, no. 1, pp. 29–35, Mar. 1998. https://doi.org/10.1016/S0926-6690(97)10003-6
dc.relation[39] A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira & E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Braz J Chem Eng, vol. 35, no. 3, pp. 1005–1018, 2018. https://doi.org/10.1590/0104- 6632.20180353s20170001
dc.relation[40] S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed & A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J Chem Eng, vol. 37, pp. 1351–368, Jun. 2020. https://doi.org/10.1007/s43153-020-00027-9
dc.relation[41] M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi. org/10.1021/ie100725f
dc.relation64
dc.relation51
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/2896
dc.subjectBiodiesel
dc.subjectEfficiency
dc.subjectIncidence factor
dc.subjectMixing temperature
dc.subjectUltrasound
dc.subjectEficiencia
dc.subjectFactor de incidencia
dc.subjectTemperatura de mezcla
dc.subjectUltrasonido
dc.titlePerformance of biodiesel production by means of Ultrasonic Transesterification
dc.titleDesempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución