Diseño y evaluación de desempeño de un panel de seguimiento solar de un solo eje en Colombia

dc.creatorGONZALEZ ACEVEDO, HERNANDO
dc.creatorMuñoz Maldonado, Yecid Alfonso
dc.creatorOspino C., Adalberto
dc.creatorSerrano Atencio, Julian Anthony
dc.creatorJaimes Saavedra, Cristian
dc.date2021-06-04T22:33:32Z
dc.date2021-06-04T22:33:32Z
dc.date2021-01-13
dc.date.accessioned2023-10-03T18:57:00Z
dc.date.available2023-10-03T18:57:00Z
dc.identifier20888708
dc.identifierhttps://hdl.handle.net/11323/8360
dc.identifierhttps://doi.org/10.11591/ijece.v11i4.pp2889-2898
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166446
dc.descriptionThis paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.
dc.descriptionEste artículo presenta el diseño mecánico de un seguimiento solar de un solo eje. sistema, así como el diseño electrónico de un sistema que grabar en tiempo real la potencia eléctrica entregada por el seguidor solar y evaluar su actuación. La interfaz fue desarrollada en Labview y compara el energía suministrada por el seguidor con la energía suministrada por el panel solar estático de las mismas características. El rendimiento se simula inicialmente con Pv-Syst software, y posteriormente validado con los datos obtenidos por la interfaz. Como un Como resultado, el uso del seguidor solar aumenta la potencia entregada por un mínimo del 19%, y puede llegar hasta el 47,84%, con un promedio en aumento de potencia del 19,5% en la producción de energía mensual. Esto El resultado experimental se comparó con la simulación del software Pv-Syst. y muestra una diferencia de solo 2.5%, validando así la confiabilidad del simulación. Este patrón de comportamiento coincide con estudios previos realizados para latitudes ecuatoriales.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Journal of Electrical and Computer Engineering (IJECE)
dc.relation[1] E. Noriega-Angarita et al., "Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks," International Journal of Engineering and Technology, vol. 8, no. 4, pp. 1817-1825, 2016.
dc.relation[2] Y. Muñoz, J. Guerrero, and A. Ospino., “Evaluation of hybrid system of renawable electricity generation a remote area of Colombia using homer software,” Tecciencia, vol. 9, no. 17, pp. 45-54, 2014.
dc.relation[3] A. Ospino-Castro et al., "Techno-economic evaluation of a grid-connected hybrid PV-wind power generation system in San Luis Potosi, Mexico," 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, pp. 1-6.
dc.relation[4] A. Ospino, “Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico,” INGE CUC, vol. 6, no. 1, pp. 95-102, 2010.
dc.relation[5] Unidad Española Fotovoltaica, UNEF, "Informe anual sobre energía Fotovoltaica," España, 2016. [Online]. Available: https://unef.es/wp-content/uploads/dlm_uploads/2016/08/Informe-Anual-UNEf-2016_El-tiempo-de-laenergia-solar-fotovoltaica.pdf.
dc.relation[6] Grupo NAP, "Energía Fotovoltaica," Colegio oficial de ingenieros de telecomunicaciones, Ibergraphi, Madrid, España, 2007.
dc.relation[7] J. Eras et al., "A look to the electricity generation from non-conventional renewable energy sources in Colombia," International Journal of Energy Economics and Policy, vol. 9, pp. 15-25, 2019.
dc.relation[8] Robles-Algarin et al., "Dual-axis solar tracker for using in photovoltaic systems," International Journal of Renewable Energy Research, vol. 7, no. 1, pp. 137-145, 2017.
dc.relation[9] Robles Algarin et al., "Implementation of a cost-effective fuzzy MPPT controller on the Arduino board," International Journal on Smart Sensing and Intelligent Systems, vol. 11, no. 1, pp. 1-10, 2018.
dc.relation[10] D. Guardado et al., "Implementación de seguidor solar en dos ejes para el sistema fotovoltáico de la escuela de ingeniería eléctrica de la UES," Tesis, Universidad de El Salvador, 2012.
dc.relation[11] A. Rustu Eke, "Performance comparison of a double-axis sun tracking versus fixed PV system," Mugla Sıtkı Kocman University, Clean Energy Research and Development Centre, 2011.
dc.relation[12] E. Turrillas, "Estudio comparativo de la eficiencia energética en seguidores solares," Tesis, Universidad Pública de Navarra, 2014.
dc.relation[13] B. Cohaila, "Diseño de un sistema de seguimiento solar de un eje para el aprovechamiento de la energía solar en sistemas fotovoltaicos," Universidad Nacional Jorge Basadre Grohman, Perú, 2006.
dc.relation[14] Mejia, Andrés Escobar, M. Holguín Londoño, and J. C. Osorio, "Diseño e implementación de un seguidor solar para la optimización de un sistema fotovoltaico," Scientia et Technica, vol. 1, no. 44, pp. 245-250, 2010.
dc.relation[15] Y. Muñoz et al., "Sizing and study of the energy production of a grid-tied photovoltaic system using PVsyst software," Tecciencia, vol. 12, no. 22, pp. 27-32, 2017.
dc.relation[16] K. Nallapaneni et al., "Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool," Energy Procedia, vol. 117, pp. 180-189, 2017.
dc.relation[17] B. Belmahdi et al., "Solar Potential Assessment using PVsyst Software in the Northern Zone of Morocco," Procedia Manufacturing, vol. 46, pp. 738-745, 2020.
dc.relation[18] J. Kreider, "Solar energy applications," Mechanical Engineers Handbook: Energy and Power, vol. 4, 2006.
dc.relation[19] H. Ambarita, "Development of software for estimating clear sky solar radiation in Indonesia," Journal of Physics: Conference Series, vol. 801, 2017.
dc.relation[20] J. Beltran, "Prototipo fotovoltaico con seguimiento del sol para procesos electroquímicos," Tesis de maestría en Ciencias, Centro Nacional de Investigación y Desarrollo Tecnológico. 2007.
dc.relation[21] R. Nazmul, "Calculating Optimum Angle for Solar Panels of Dhaka, Bangladesh for Capturing Maximum Irradiation," 2017 IEEE International WIE Conference on Electrical and Computer Engineering, pp. 25-28, 2017.
dc.relation[22] Decreto número 1400 de 1984, "Código de construcción Sismo-Resistente," [Online]. Available: http://www.icbf.gov.co/cargues/avance/docs/decreto_1400_1984.htm
dc.relation[23] S. Abdallah and O. Badran, "Sun tracking system for productivity enhancement of solar still," Desalination, vol. 220, no. 1-3, pp. 669-676, 2008.
dc.relation[24] Z. Li et al., "Optical performance of vertical single-axis tracked solar panels," Renew. Energy, vol. 36, no. 1, pp. 64-68, 2011.
dc.relation[25] M. Koussa et al., "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Appl. Energy, vol. 88, no. 5, pp. 1756-1771, 2011.
dc.relation[26] Ma, Yi, Guihua Li, and Runsheng Tang, "Optical performance of vertical axis three azimuth angles tracked solar panels," Appl. Energy, vol. 88, no. 5, pp. 1784-1791, 2011.
dc.relation[27] G. Lazaroiu et al., "Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption," Energy Conversion and Management, vol. 92, pp. 143-148, 2015.
dc.relation[28] A. Sagar et al., "A Novel Design of A Bi-level Automatic Solar Tracker Using Rotations Around Orthogonal Axes," IEEE Proceedings from ICCCNT, 2017.
dc.relation[29] Reddy, J. Satheesh, A. Chakraborti, and B. Das., "Implementation and Practical Evaluation of an Automatic Solar Tracking System for Different Weather Conditions," IEEE 7th Power India International Conference (PIICON), 2016, pp. 1-6.
dc.relation[30] R. Dhanabal et al., "Comparison of Efficiencies of Solar Tracker systems with static panel SingleAxis Tracking System and Dual-Axis Tracking System with Fixed Mount," International journal of engineering and technology, vol. 5, no. 2, pp. 1925-1933, 2013.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttp://ijece.iaescore.com/index.php/IJECE/article/view/24581
dc.subjectEnergy efficiency
dc.subjectPhotovoltaic panel
dc.subjectPower generation plant
dc.subjectPv-Syst software
dc.subjectSolar tracker
dc.subjectEficiencia energética
dc.subjectPanel fotovoltaico
dc.subjectPlanta de generación de energía
dc.subjectSeguidor solar
dc.titleDesign and performance evaluation of a solar tracking panel of single axis in Colombia
dc.titleDiseño y evaluación de desempeño de un panel de seguimiento solar de un solo eje en Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución