dc.creatorOrtiz-Barrios, Miguel
dc.creatorBorrego-Areyanes, Arlen Alaine
dc.creatorGómez-Villar, Iván Darío
dc.creatorDe Felice, Fabio
dc.creatorPetrillo, Antonella
dc.creatorGul, Muhammet
dc.creatorYUCESAN, Melih
dc.date2021-07-14T13:05:20Z
dc.date2021-07-14T13:05:20Z
dc.date2021
dc.date2023
dc.date.accessioned2023-10-03T18:56:41Z
dc.date.available2023-10-03T18:56:41Z
dc.identifier2212-4209
dc.identifierhttps://hdl.handle.net/11323/8467
dc.identifierhttps://doi.org/10.1016/j.ijdrr.2021.102411
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166399
dc.descriptionThe impact of the pandemic and the lockdown has been more devastating than expected on the world economy. It is essential to formulate strategies in real-time. In this research, a multicriteria decision-making model for increasing the preparedness level of sales departments when facing COVID-19 waves and future pandemics is proposed. The model is comprised of 8 criteria, 29 sub-criteria, and 7 alternatives. The study is based on the integration of the AHP and TOPSIS techniques. AHP is used for calculating the criteria and sub-criteria weights. While, TOPSIS is used for calculating the preparedness level, ranking the companies, and identifying the weaknesses that should be addressed for increasing their effectiveness in the current market scenario. The model is developed with the aid of an experts’ group from the electrical appliance sector and studies from the reported literature. This application is completely novel in the literature and has been applied in the wild with remarkable companies in Colombia. A case study in the electrical appliance sector is presented as a pilot study but it should be noted that the methodology is flexible and scalable in any scenario.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] P. Amariles, J. Granados, M. Ceballos, C.J. Montoya COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Soc. Adm. Pharm., 17 (1) (2020), pp. 2036-2039
dc.relation[2] W. Novoa, H. Miller, S. Mattar, Á.A. Faccini-Martínez, R. Rivero, H. Serrano-Coll A first probable case of SARS-CoV-2 reinfection in Colombia Ann. Clin. Microbiol. Antimicrob., 20 (1) (2021), p. 7
dc.relation[3] J. Arellana, L. Márquez, V. Cantillo COVID-19 outbreak in Colombia: an analysis of its impacts on transport systems J. Adv. Transport., 2020 (2020), p. 8867316
dc.relation[4] S.A. Meo, A.A. Abukhalaf, A.A. Alomar, A.M. Usmani, D.C. Klonoff Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries Eur. J. Med. Res., 25 (1) (2020), p. 56
dc.relation[5] E.E. Ramírez de la Cruz, E.J. Grin, P. Sanabria-Pulido, D. Cravacuore, A. Orellana The transaction costs of government responses to the COVID-19 emergency in Latin America Publ. Adm. Rev., 80 (4) (2020), pp. 683-695
dc.relation[6] J.A. Rodríguez Economic situation, fiscal policy and pandemic in Colombia Rev. Econ. Inst., 23 (44) (2020), pp. 249-263
dc.relation[7] Chicaíza Becerra, L., García Molina, M., Urrea, I.L., Economy or health? A global analysis of the covid-19 pandemic. Rev. Econ. Inst., 23(44), pp. 171-194.
dc.relation[8] A. Tarki, P. Levy, J. Weiss The coronavirus crisis doesn't have to lead to layoffs Harv. Bus. Rev. (2020) March 2020
dc.relation[9] J.I. González Planning and uncertainty Rev. Econ. Inst., 23 (44) (2020), pp. 233-248
dc.relation[10] A. Ferrannini, E. Barbieri, M. Biggeri, M.R. Di Tommaso Industrial policy for sustainable human development in the post-Covid19 era World Dev., 137 (2021), p. 105215
dc.relation[11] M. Ortiz-Barrios, C. Miranda-De la Hoz, P. López-Meza, A. Petrillo, F. De Felice A case of food supply chain management with AHP, DEMATEL, and TOPSIS J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 104-128, 10.1002/mcda.1693
dc.relation[12] T.L. Saaty, L.G. Vargas The analytic hierarchy process: wash citeria should not be ignored Int. J. Manag. Decis. Making, 7 (2–3) (2006), pp. 180-188, 10.1504/IJMDM.2006.009142
dc.relation[13] J.P. Pastor-Ferrando, P. Aragonés-Beltrán, A. Hospitaler-Pérez, M. García-Melón An ANP- and AHP-based approach for weighting criteria in public works bidding J. Oper. Res. Soc., 61 (6) (2010), pp. 905-916, 10.1057/jors.2010.13
dc.relation[14] J. Sarkis Supply chain sustainability: learning from the COVID-19 pandemic Int. J. Oper. Prod. Manag., 41 (1) (2020), pp. 63-73, 10.1108/IJOPM-08-2020-0568
dc.relation[15] M.P. Basilio, V. Pereira, H.G. Costa Classifying the integrated public safety areas (IPSAs): a multi-criteria based approach J. Model. Manag., 14 (1) (2019), pp. 106-133, 10.1108/JM2-01-2018-0001
dc.relation[16] E.G. Carayannis, J.J.M. Ferreira, M.S. Jalali, F.A.F. Ferreira MCDA in knowledge-based economies: methodological developments and real world applications Technol. Forecast. Soc. Change, 131 (2018), pp. 1-3, 10.1016/j.techfore.2018.01.028
dc.relation[17] S.H. Zyoud, D. Fuchs-Hanusch A bibliometric-based survey on AHP and TOPSIS techniques Expert Syst. Appl., 78 (2017), pp. 158-181, 10.1016/j.eswa.2017.02.016
dc.relation[18] G. Riz, E.A.P. Santos, E. de Freitas Rocha Loures Interoperability Assessment in Health Systems Based on Process Mining and MCDA Methods (2017), 10.1007/978-3-319-56535-4_44
dc.relation[19] M. Rajak, K. Shaw Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS Technol. Soc. (2019), p. 59, 10.1016/j.techsoc.2019.101186
dc.relation[20] T.L. Saaty Applications of analytical hierarchies Math. Comput. Simulat., 21 (1) (1979), pp. 1-20, 10.1016/0378-4754(79)90101-0
dc.relation[21] C.L. Hwang, K. Yoon Multiple Attribute Decision Making Methods and Applications: A State-Of-The-Art Survey Springer, Berlin, Heidelberg (1981)
dc.relation[22] G. Kumar, N. Parimala An integration of sentiment analysis and MCDM approach for smartphone recommendation Int. J. Inf. Technol. Decis. Making, 19 (4) (2020), pp. 1037-1063, 10.1142/S021962202050025X
dc.relation[23] R. Bhattacharya, R.D. Raut, B.B. Gardas, S.S. Kamble Sustainable partner selection: an integrated AHP-TOPSIS approach Int. J. Oper. Res., 39 (2) (2020), pp. 205-236, 10.1504/IJOR.2020.109755
dc.relation[24] I.B. Huang, J. Keisler, I. Linkov Multi-criteria decision analysis in environmental sciences: ten years of applications and trends Sci. Total Environ., 409 (19) (2011), pp. 3578-3594, 10.1016/j.scitotenv.2011.06.022
dc.relation[25] K. Nikolopoulos, S. Punia, A. Schäfers, C. Tsinopoulos, C. Vasilakis Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions Eur. J. Oper. Res., 290 (1) (2021), pp. 99-115
dc.relation[26] R. Romero-Silva, S. de Leeuw Learning from the past to shape the future: a comprehensive text mining analysis of OR/MS reviews Omega (United Kingdom), 100 (2021), p. 102388
dc.relation[27] M. Brunelli A study on the anonymity of pairwise comparisons in group decision making Eur. J. Oper. Res., 279 (2) (2019), pp. 502-510
dc.relation[28] M. Abdel-Basset, M. Gunasekaran, M. Mohamed, N. Chilamkurti A framework for risk assessment, management and evaluation: economic tool for quantifying risks in supply chain Future Generat. Comput. Syst., 90 (2019), pp. 489-502, 10.1016/j.future.2018.08.035
dc.relation[29] J. Freeman, T. Chen Green supplier selection using an AHP-entropy-TOPSIS framework Supply Chain Manag., 20 (3) (2015), pp. 327-340, 10.1108/SCM-04-2014-0142
dc.relation[30] D. Jothimani, S.P. Sarmah Supply chain performance measurement for third party logistics Benchmark, 21 (6) (2014), pp. 944-963, 10.1108/BIJ-09-2012-0064
dc.relation[31] S. Carpitella, A. Certa, J. Izquierdo, C.M. La Fata A combined multi-criteria approach to support FMECA analyses: a real-world case Reliab. Eng. Syst. Saf., 169 (2018), pp. 394-402, 10.1016/j.ress.2017.09.017
dc.relation[32] O.E. Demesouka, A.P. Vavatsikos, K.P. Anagnostopoulos Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study Waste Manag., 33 (5) (2013), pp. 1190-1206, 10.1016/j.wasman.2013.01.030
dc.relation[33] I. Kaliszewski, D. Podkopaev Simple additive weighting - a metamodel for multiple criteria decision analysis methods Expert Syst. Appl., 54 (2016), pp. 155-161, 10.1016/j.eswa.2016.01.042
dc.relation[34] H. Zhao, N. Li Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods Sustainability, 8 (2) (2016), 10.3390/su8020129
dc.relation[35] C.-N. Wang, N.-A.-T. Nguyen, T.-T. Dang, C.-M. Lu A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy ahp and fuzzy vikor methods Mathematics, 9 (8) (2021), p. 886, 10.3390/math9080886
dc.relation[36] A. Tošović-Stevanović, V. Ristanović, D. Ćalović, M. Žuža, G. Cvijanović Small farm business analysis using the ahp model for efficient assessment of distribution channels Sustainability, 12 (24) (2020), pp. 1-15, 10.3390/su12241047910479
dc.relation[37] V. Ristanović, D. Primorac, G. Kozina Operational risk management using multi-criteria assessment (Ahp model) Teh. Vjesn., 28 (2) (2021), pp. 678-683, 10.17559/TV-20200907112351
dc.relation[38] S. Yao Fuzzy-based multi-criteria decision analysis of environmental regulation and green economic efficiency in a post-COVID-19 scenario: the case of China Article in Press10 Environ. Sci. Pollut. Control Ser. (2021) 1007/s11356-021-12647-w
dc.relation[39] G.D. Batur Sir, E. Sir Pain treatment evaluation in COVID-19 patients with hesitant fuzzy linguistic multicriteria decision-making Journal of Healthcare Engineering (2021), p. 8831114, 10.1155/2021/8831114
dc.relation[40] T.J. Mohammed, A.S. Albahri, A.A. Zaidan, R.T. Mohammed, S.M. Hadi Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component Appl. Intell. (2021), 10.1007/s10489-020-02169-2
dc.relation[41] F. Samanlioglu, B.E. Kaya Evaluation of the COVID-19 pandemic intervention strategies with hesitant F-ahp Journal of Healthcare Engineering (2020), 10.1155/2020/8835258 Article in Press 8835258
dc.relation[42] R.S. Bharsakade, P. Acharya, L. Ganapathy, M.K. Tiwari A lean approach to healthcare management using multi criteria decision making Opsearch (2021), 10.1007/s12597-020-00490-5 Article in Press
dc.relation[43] A.S. Albahri, J.R. Al-Obaidi, A.A. Zaidan, A.H. Alamoodi, M. Hashim Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods Int. J. Inf. Technol. Decis. Making, 19 (5) (2020), pp. 1247-1269, 10.1142/S0219622020500285
dc.relation[44] S. Ghosh, A. Das, T.K. Hembram, B. Pradhan, A.M. Alamri Impact of COVID-19 induced lockdown on environmental quality in four Indian megacities Using Landsat 8 OLI and TIRS-derived data and Mamdani fuzzy logic modelling approach Sustainability, 12 (13) (2020), p. 5464, 10.3390/su12135464
dc.relation[45] P. Amenta, A. Ishizaka, A. Lucadamo, G. Marcarelli, V. Vyas Computing a common preference vector in a complex multi-actor and multi-group decision system in analytic hierarchy process context Ann. Oper. Res., 284 (1) (2020), pp. 33-62, 10.1007/s10479-019-03258-3
dc.relation[46] A. Lombardi Netto, V.A.P. Salomon, M.A. Ortiz-Barrios, A.K. Florek-Paszkowska, A. Petrillo, O.J. De Oliveira Multiple criteria assessment of sustainability programs in the textile industry Int. Trans. Oper. Res., 28 (3) (2021), pp. 1550-1572, 10.1111/itor.12871
dc.relation[47] M. Ortiz-Barrios, C. Nugent, I. Cleland, M. Donnelly, A. Verikas Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: a multicriteria framework J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 20-38, 10.1002/mcda.1678
dc.relation[48] R. Kumar, K. Singh, S.K. Jain A combined AHP and TOPSIS approach for prioritizing the attributes for successful implementation of agile manufacturing Int. J. Prod. Perform. Manag., 69 (7) (2020), pp. 1395-1417, 10.1108/IJPPM-05-2019-0221
dc.relation[49] T.L. Saaty The Analytic Hierarchy Process McGraw-Hill, New York, USA (1980)
dc.relation[50] T.L. Saaty Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, vol. 6, RWS publications (2000)
dc.relation[51] A. Ishizaka, M. Tasiou, L. Martínez Analytic hierarchy process-fuzzy sorting: an analytic hierarchy process–based method for fuzzy classification in sorting problems J. Oper. Res. Soc., 71 (6) (2020), pp. 928-947, 10.1080/01605682.2019.1595188
dc.relation[52] M. Ortiz-Barrios, J. Cabarcas-Reyes, A. Ishizaka, M. Barbati, N. Jaramillo-Rueda, G. de Jesús Carrascal-Zambrano A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: a case study from the mining industry Ann. Oper. Res. (2020), 10.1007/s10479-020-03737-y
dc.relation[53] M. Ortiz-Barrios, M. Gul, P. López-Meza, M. Yucesan, E. Navarro-Jiménez Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: the case of Turkish hospitals International Journal of Disaster Risk Reduction, 49 (2020), 10.1016/j.ijdrr.2020.101748
dc.relation[54] L. Pecchia, J.L. Martin, A. Ragozzino, C. Vanzanella, A. Scognamiglio, L. Mirarchi, S.P. Morgan User needs elicitation via analytic hierarchy process (AHP). A case study on a computed tomography (CT) scanner BMC Med. Inf. Decis. Making, 13 (1) (2013), 10.1186/1472-6947-13-2
dc.relation[55] G.H. Tzeng, J.J. Huang Multiple Attribute Decision Making: Methods and Applications CRC press, Boca Raton, FL, USA (2011)
dc.relation[56] V. Lahri, K. Shaw, A. Ishizaka Sustainable supply chain network design problem: using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods Expert Syst. Appl. (2021), p. 168, 10.1016/j.eswa.2020.114373
dc.relation[57] Y. Çelikbilek, F. Tüysüz An in-depth review of theory of the TOPSIS method: an experimental analysis Journal of Management Analytics, 7 (2) (2020), pp. 281-300, 10.1080/23270012.2020.1748528
dc.relation[58] Confecámaras Encuesta Nacional Impacto Económico Covid-19 (2020) https://www.ccb.org.co/observatorio/Economia/Economia-dinamica-incluyente-e-innovadora/Impacto-del-COVID-19, Accessed 12th Feb 2021
dc.relation[59] Dane Tasa global de participación, ocupación y desempleo (2020) https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo, Accessed 12th Feb 2021
dc.relation[60] N.N. Hartmann, B. Lussier Managing the sales force through the unexpected exogenous COVID-19 crisis Ind. Market. Manag., 88 (2020), pp. 101-111, 10.1016/j.indmarman.2020.05.005
dc.relation[61] B. Avdiu, G. Nayyar When face-to-face interactions become an occupational hazard: jobs in the time of COVID-19 Econ. Lett., 197 (2020), 10.1016/j.econlet.2020.109648
dc.relation[62] Y. Wang, A. Hong, X. Li, J. Gao Marketing innovations during a global crisis: a study of China firms' response to COVID-19 J. Bus. Res., 116 (2020), pp. 214-220, 10.1016/j.jbusres.2020.05.029
dc.relation[63] M.A. Ortíz, L.E. Betancourt, K.P. Negrete, F. De Felice, A. Petrillo Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry Ann. Oper. Res., 264 (1–2) (2018), pp. 409-433, 10.1007/s10479-017-2678-x
dc.relation[64] S.Y. Chou, Y.H. Chang, C.Y. Shen A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes Eur. J. Oper. Res., 189 (1) (2008), pp. 132-145
dc.relation[65] Y.J. Wang A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation Appl. Soft Comput., 30 (2015), pp. 412-420
dc.relation[66] E. Boltürk, A. Karaşan, C. Kahraman Simple additive weighting and weighted product methods using neutrosophic sets Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, Springer, Cham (2019), pp. 647-676
dc.relation[67] M. Yazdani, P. Zarate, E.K. Zavadskas, Z. Turskis A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems Manag. Decis. (2019)
dc.relation[68] A.E. Torkayesh, D. Pamucar, F. Ecer, P. Chatterjee An integrated BWM-LBWA-CoCoSo framework for evaluation of healt hcare sectors in Eastern Europe Soc. Econ. Plann. Sci. (2021), p. 101052
dc.relation[69] Z. Zhang, Y. Gao, Z. Li Consensus reaching for social network group decision making by considering leadership and bounded confidence Knowl. Base Syst., 204 (2020), p. 106240
dc.relation[70] Z. Zhang, Z. Li, Y. Gao Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach Inf. Fusion, 74 (2021), pp. 96-110
dc.relation[71] W. Yu, Z. Zhang, Q. Zhong Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach Ann. Oper. Res. (2019), pp. 1-24
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Journal of Disaster Risk Reduction
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2212420921003721
dc.subjectMultiple criteria analysis
dc.subjectOperational research
dc.subjectDisaster preparedness
dc.subjectPandemics
dc.subjectCOVID-19
dc.titleA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución