dc.creatorPérez, Ramón
dc.creatorInga, Esteban
dc.creatorAguila, Alexander
dc.creatorVásquez, Carmen
dc.creatorLima, Liliana
dc.creatoramelec, viloria
dc.creatorMaury-Ardila, Henry
dc.date2022-10-19T20:03:02Z
dc.date2022-10-19T20:03:02Z
dc.date2022
dc.date.accessioned2023-10-03T18:56:36Z
dc.date.available2023-10-03T18:56:36Z
dc.identifierPerez, R. et al. (2018). Fault Diagnosis on Electrical Distribution Systems Based on Fuzzy Logic. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10942. Springer, Cham. https://doi.org/10.1007/978-3-319-93818-9_17
dc.identifier978-3-319-93817-2
dc.identifierhttps://hdl.handle.net/11323/9574
dc.identifier10.1007/978-3-319-93818-9_17
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier978-3-319-93818-9
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166382
dc.descriptionThe occurrence of faults in distribution systems has a negative impact on society, and their effects can be reduced by fast and accurate diagnostic systems that allow to identify, locate, and correct the failures. Since the 1990s, fuzzy logic and other artificial intelligence techniques have been implemented to identify faults in distribution systems. The main objective of this paper is to perform fault diagnoses based on fuzzy logic. For conducting the study, the IEEE 34-Node Radial Test Feeder is used. The data was obtained from ATPDraw-based fault simulation on different nodes of the circuit considering three different fault resistance values of 0, 5, and 10 ohms. The fuzzy rules to identify the type of fault are defined using the magnitudes of the phase and neutral currents. All measurements are taken at the substation, and the results show that the proposed technique can perfectly identify and locate the type of failure.
dc.format1 página
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Verlag
dc.publisherGermany
dc.relationAdvances in Swarm Intelligence;ICSI 2018
dc.relationLecture Notes in Computer Science
dc.relationThukaram, D., Khincha, H., Vijaynarasimha, H.: Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Trans. Power Delivery 20, 710–721 (2005)
dc.relationMirzaei, M., Kadir, M., Moazami, E., Hizam, H.: Review of fault location methods for distribution power system. Aust. J. Basic Appl. Sci. 3, 2670–2676 (2009)
dc.relationPrakash, M., Pradhan, S., Roy, S.: Soft computing techniques for fault detection in power distribution systems : a review. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), pp. 1–6 (2014)
dc.relationMustafa, M.: A novel fuzzy cause-and-effect-networks based methodology for a distribution system’s. In: 2013 3rd International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1–6 (2013)
dc.relationYing, H., Ying, H., Ding, Y., Ding, Y., Li, S., Li, S., Shao, S., Shao, S.: Typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators. In: IEEE International Conference on Fuzzy Systems, pp. 824–828 (1998)
dc.relationMamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975)
dc.relationSchnitman, L., Yoneyama, T.: An efficient implementation of a learning method for Mamdani fuzzy models. In: Proceedings of the Sixth Brazilian Symposium on Neural Networks, vol. 1, pp. 38–43 (2000)
dc.relationDistribution System Analysis Subcommittee: IEEE 34 Node Test Feeder (2000)
dc.relationPérez, R., Vásquez, C.: Fault location in distribution systems with distributed generation using support vector machines and smart meters. In: IEEE Ecuador Technical Chapters Meeting (ETCM), pp. 1–6 (2016)
dc.relationDas, B.: Fuzzy logic-based fault-type identification in unbalanced radial power distribution system. IEEE Trans. Power Delivery 21, 278–285 (2006)
dc.relationMahanty, R., Gupta, P.: A fuzzy logic based fault classification approach using current samples only. Electr. Power Syst. Res. 77, 501–507 (2007)
dc.relationBabayomi, O., Oluseyi, P., Keku, G., Ofodile, N.: Neuro-fuzzy based fault detection identification and location in a distribution network. In: Proceedings of 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica, pp. 164–168 (2017)
dc.relationRi, H.: A hybrid wavelet singular entropy and fuzzy system based fault detection and classification on distribution line with distributed generation. In: 2nd IEEE International Conference on Recent Trends in Electronics Information and Communication Technology (RTEICT), pp. 1473–1477 (2017)
dc.relationIzquierdo, N.V., Viloria, A., Gaitán-Angulo, M., Bonerg, O., Lezama, P., Erase, J.J.C., Gutiérrez, A.S.: Methodology of application of diffuse mathematics to performance evaluation. Int. J. Control Theory Appl. (2016). ISSN 0974-5572
dc.relation185
dc.relation174
dc.rights© 2018 Springer International Publishing AG, part of Springer Nature
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://link.springer.com/chapter/10.1007/978-3-319-93818-9_17
dc.subjectDistribution systems
dc.subjectFault location
dc.subjectFault type
dc.subjectFuzzy logic
dc.titleFault diagnosis on electrical distribution systems based on fuzzy logic
dc.typeCapítulo - Parte de Libro
dc.typehttp://purl.org/coar/resource_type/c_3248
dc.typeText
dc.typeinfo:eu-repo/semantics/bookPart
dc.typehttp://purl.org/redcol/resource_type/CAP_LIB
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/coar/version/c_b1a7d7d4d402bcce


Este ítem pertenece a la siguiente institución