dc.creator | Frantz Lütke, Sabrina | |
dc.creator | Perondi, Daniele | |
dc.creator | M. Machado, Lauren M. | |
dc.creator | Godinho, Marcelo | |
dc.creator | S. Oliveira, Marcos L. | |
dc.creator | Collazzo, Gabriela | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2020-09-29T21:32:43Z | |
dc.date | 2020-09-29T21:32:43Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T18:56:07Z | |
dc.date.available | 2023-10-03T18:56:07Z | |
dc.identifier | https://hdl.handle.net/11323/7133 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9166310 | |
dc.description | The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol
onto the surface of underutilized seed of Adenopus brevi florus: a potential means
of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/
10.1016/j.jece.2015.12.012. | |
dc.relation | [2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic
phenolic compounds using porous carbon prepared from renewable biomass
coconut spathe and exploration of new source for porous carbon materials,
J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j.
jece.2018.01.051. | |
dc.relation | [3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies
of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto
biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017)
182–192, https://doi.org/10.1016/j.surfin.2017.03.011. | |
dc.relation | [4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the
adsorption properties of an activated carbon coated by titanium dioxide for the
removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876,
https://doi.org/10.1016/j.jwpe.2019.100876. | |
dc.relation | [5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents:
a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j.
eti.2018.05.006. | |
dc.relation | [6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An
overview of chlorophenols as contaminants and their removal from wastewater by
adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/
10.1016/j.jenvman.2019.04.004. | |
dc.relation | [7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water
treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j.
jece.2020.103988. | |
dc.relation | [8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.
P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of
microwave-assisted activated carbons from wood chips for removal of phenol from
aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j.
molliq.2016.09.032. | |
dc.relation | [9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New
biochar from pecan nutshells as an alternative adsorbent for removing reactive red
141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/
10.1016/j.jclepro.2017.10.007. | |
dc.relation | [10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an
Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363. | |
dc.relation | [11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.
L. Dotto, Development of CO2 activated biochar from solid wastes of a beer
industry and its application for methylene blue adsorption, Waste Manag. 78
(2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040. | |
dc.relation | [12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´
an, Adsorption of
phenol and 2,4-dinitrophenol on activated carbons with surface modifications,
Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j.
micromeso.2015.01.052. | |
dc.relation | [13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as
potential sustainable precursors used for activated carbon production: a review,
Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j.
rser.2015.02.051. | |
dc.relation | [14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for
activated carbons from Tamarind wood by zinc chloride using response surface
methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/
10.1016/j.biortech.2009.10.031. | |
dc.relation | [15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2
activation parameters on the pore structure of silicon carbide-derived carbons,
New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19)
30022-8. | |
dc.relation | [16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.
C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and
palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020)
96–104, https://doi.org/10.1016/j.wasman.2020.05.038. | |
dc.relation | [17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.
L. Dotto, Development of high quality activated carbon from biological sludge and
its application for dyes removal from aqueous solutions, Sci. Total Environ. 660
(2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027. | |
dc.relation | [18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous
Solution By W O Od, Trans IChemE. 76 (1998) 183–191. | |
dc.relation | [19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum,
J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004. | |
dc.relation | [20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on
the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010)
137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027. | |
dc.relation | [22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval,
Journal of environmental chemical engineering preparation of activated carbon
from black wattle bark waste and its application for phenol adsorption, J. Environ.
Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396. | |
dc.relation | [23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso,
J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC Technical Report),
Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117. | |
dc.relation | [24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli,
G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm,
kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336,
https://doi.org/10.1016/j.ecoenv.2015.11.012. | |
dc.relation | [25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as
potential sustainable precursors used for activated carbon production: a review,
Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j.
rser.2015.02.051. | |
dc.relation | [26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon
from lignocellulosic biomass and its applications in air pollution control - a review,
J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j.
jece.2013.09.017. | |
dc.relation | [27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜
Graphene and carbon nanotubes as solid phase extraction sorbents for the
speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi.
org/10.1016/j.aca.2017.11.042. | |
dc.relation | [28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of
chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/
Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j.
jhazmat.2013.11.057. | |
dc.relation | [29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of
hexavalent chromium by activated carbon obtained from a waste lignocellulosic
material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study,
Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/
0263617417750739. | |
dc.relation | [30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162
(2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020. | |
dc.relation | [31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol
onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid
Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049. | |
dc.relation | [32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of
chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem.
Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055. | |
dc.relation | [33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi,
Adsorption characteristics of congo red from aqueous solution onto tea waste,
Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/
00986445.2013.836633. | |
dc.relation | [34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A
system of classification of solution adsorption isotherms, and its use in diagnosis of
adsorption mechanisms and in measurement of specific surface areas of solids,
J. Chem. Soc. 786 (1960) 3973. | |
dc.relation | [35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient
adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci.
292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041. | |
dc.relation | [36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption
Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/
S0301-7036(14)70853-3. | |
dc.relation | [37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto,
Conversion of MDF wastes into a char with remarkable potential to remove Food
Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi.
org/10.1016/j.chemosphere.2020.126248. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.source | Journal of Environmental Chemical Engineering | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2213343720308228 | |
dc.subject | 2-chlorophenol | |
dc.subject | Adsorption | |
dc.subject | Biochar | |
dc.subject | Malt bagasse | |
dc.subject | Pyrolysis | |
dc.title | Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars | |
dc.type | Pre-Publicación | |
dc.type | http://purl.org/coar/resource_type/c_816b | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/preprint | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/redcol/resource_type/ARTOTR | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |