Universidades ambientalmente sustentables: la sede Campus Nueva Granada de la Universidad Militar Nueva Granada y su relación con el agua

dc.creatorIvanova, Yulia
dc.creatorHurtado Rodriguez, Rosa Isabel
dc.creatorGutiérrez Wills, Manuel Santiago
dc.date2023-06-01T22:30:03Z
dc.date2023-06-01T22:30:03Z
dc.date2021
dc.date.accessioned2023-10-03T18:55:53Z
dc.date.available2023-10-03T18:55:53Z
dc.identifierY. Ivanova, R. Hurtado Rodríguez & M. Gutiérrez Ruíz, “Environmentally sustainable universities: the Nueva Granada Campus of the Nueva Granada Military University and its relationship with water.”, INGE CUC, vol. 17, no. 2, pp. 89–102. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.09
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10226
dc.identifier10.17981/ingecuc.17.2.2021.09
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166273
dc.descriptionIntroducción— La sede campus Nueva Granada de la Universidad Militar Nueva Granada (Colombia) se construyó respondiendo a las tendencias globales de la arquitectura moderna para estar en armonía con el ambiente a través de sus construcciones bioclimáticas, iluminación con base en energía fotovoltaica y manejo del recurso hídrico. No obstante, el constante crecimiento de la oferta académica, de la infraestructura y de la comunidad universitaria demanda un mayor uso de los recursos naturales, indispensables para un buen funcionamiento de la sede. Uno de estos recursos es el agua. Objetivo— En el trabajo se evaluó la sustentabilidad del manejo del agua en la sede Campus de la universidad. Metodología— Esta evaluación se realizó empleando el Índice de Sustentabilidad del Recurso Hídrico con la integración del concepto de la huella hídrica. Resultados— Se obtuvo que la universidad ha hecho unos esfuerzos para el manejo eficiente del recurso hídrico. No obstante, estos no son suficientes para evaluar el manejo del agua como sustentable. Conclusiones— Teniendo en cuenta este resultado se concluye que la universidad debe formular acciones de mejora en los aspectos tecnológico y gestión institucional que permitirán mantener los consumos del agua estables bajo el escenario del crecimiento de la universidad, disminuirán la contaminación de los vertimientos e impactarán de manera positiva la evapotranspiración, como parte fundamental del retorno del agua al ambiente.
dc.descriptionIntroduction— The Nueva Granada campus headquarters of the Nueva Granada Military University (Colombia) was built responding to global trends in modern architecture to be in harmony with the environment through its bioclimatic constructions, lighting based on photovoltaic energy and management of water resources. However, the constant growth of the academic offer, the infrastructure and the university community demand a greater use of natural resources, essential for the proper functioning of the headquarters. One of these resources is water. Objective— The work evaluated the sustainability of water management in the campus of the university. Methodology— This evaluation was carried out using the Water Resource Sustainability Index with the integration of the water footprint concept. Results: It was obtained that the university has made efforts for the efficient management of water resources. However, these are not enough to evaluate water management as sustainable. Conclusions— Considering this result, it is concluded that the university must formulate improvement actions in the technological and institutional management aspects that will allow to maintain stable water consumption under the scenario of the university’s growth, reduce the pollution of the discharges and impact in a positive way on the evapotranspiration, as a fundamental part of the return of water to the environment.
dc.format13 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] R. Ulucak, Danish & B. Ozcan, “Relationship between energy consumption and environmental sustaibability in OECD countries: The role of natural resources rents,” Resour Pol, vol. 69, pp. 101803–101803, Dec. 2020. https://doi.org/10.1016/j.resourpol.2020.101803
dc.relation[2] MillenniumEcosystemAssessment, “Evaluación de Ecosistemas de Milenio,” millenniumassessment.org, [online], 2005. Disponible en https://www.millenniumassessment.org/es/Index-2.html
dc.relation[3] I. A. Shiklomanov & J. A. Balonishnikova, “,” World water use and water availability: Trends, scenarios, consequences, SPB, RU: IAHS- AISH Publication, pp. 358–364, Jul. 2003. Available: http://hydrologie. org/redbooks/a281/iahs_281_358.pdf
dc.relation[4] PNUD, “Objetivos de Desarrollo Sostenible,” undp.org. [online], 2015. Disponible en https://www.undp. org/content/undp/es/home/sustainable-development-goals.html
dc.relation[5] F. González-Ladron-de-Guevara, En busca de caminos para la comprensión de la problemática ambiental: la escisión moderna entre cultura y naturaleza. BO, CO: PUJ/ IDEADE, 2006.
dc.relation[6] K. Kandananond, “The application of water footprint and six . sigma methonds to reduce the water consumption in an organization,” Int J GEOMATE, vol. 17, no. 61, pp. 21–27, Sep. 2019. https://doi.org/ https://doi.org/10.21660/2019.61.4535
dc.relation[7] Y. Gu, H. Wang, Z. P. Robinson, X. Wang, J. Wu, X. Li, J. Xu & F. Li, “Environmental footprint assessment of green campus from a food-water-energy nexus perspective,” Egy Pro, vol. 152, pp. 240–246, Oct. 2018. https://doi.org/10.1016/j.egypro.2018.09.109
dc.relation[8] R. Mendoza-Flores, R. Quintero-Ramírez & I. Ortiz, “The carbon footprint of a public university capus in Mexico City,” Carbon Manag, vol. 10, no. 5, pp. 501–511, Aug. 2019. https://doi.org/10.1080/17583004.201 9.1642042
dc.relation[9] M. Hatjiathanassiadou, S. R. Gomes, J. Pereira, L. de-Medeiros, V. J. Strasburg, P. Moura & L. M´A. Jucá, “Environmental impacts of university restaurant menus: A case study in Brazil,” Sustain, vol.11, no. 19, pp. 1–15, 2019. https://doi.org/10.3390/su11195157
dc.relation[10] J. Guerra & I. Rincón, “Calculation of carbon footprint in the universidad central de Venezuela campus,” Rev Luna Azul, vol. 46, pp. 82–101, Ene. 2018. Available: https://pesquisa.bvsalud.org/portal/resource/pt/ biblio-1007101
dc.relation[11] M. Lim & G. Hayder, “Perfomance and reduction of carbon footprint for a sustainable campus,” IJEAT, vol.9, no. 1, pp. 3489–3497, Oct. 2019. https://doi.org/10.35940/ijeat.A2672.109119
dc.relation[12] S. Adbullah, A. Mansor, A. Ahmed, N. Napi & M. Ismail, “Carbon footprint assessment for academic institution: a UI greenmetric approach,” IJSTR, vol. 8, no. 11, pp. 1752–1755, Nov. 2019. Available: http:// www.ijstr.org/final-print/nov2019/Carbon-Footprint-Assessment-For-Academic-Institution-A-Ui-Greenmetric-Approach.pdf
dc.relation[13] D. Allison, E. Lohan & T. Baldwin, “The WaterHub at Emory University: Campus resiliency through decentralized reuse,” Water Environ Res, vol. 90, no. 2, pp. 187–192, Feb. 2018. https://doi.org/10.2175/10 6143017X15054988926569
dc.relation[14] N. Mirabella & K. Allacker, “City environmental footprint: Insights and application of an innovative LCA-based method to evaluate urban environmental impacts,” IOP Conf Ser: Earth Environ Sci, vol. 588, no. 4, pp. 1.1–1.14, 2020. https://doi.org/10.1088/1755-1315/588/4/042047
dc.relation[15] M. Karamouz, R. Rahimi & E. Ebrahimi, “Uncertain Water Balance-Based Sustainability Index of Supply and Demand,” J Water Res Plan Man, vol. 147, no. 5, pp. 4021015–4021015, May. 2021. https:// doi.org/10.1061/(ASCE)WR.1943-5452.0001351
dc.relation[16] X. Han, Y. Zhao, X. Gao, S. Jiang, L. Lin & T. An, “Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures,” Sci Tot Env, vol. 765, pp. 144276–144276, Apr. 2021. https://doi.org/10.1016/j.scitotenv.2020.144276
dc.relation[17] UMNG, “Proyecto Campus Nueva Granada,” umng.edu.co, [online], 2020. Disponible en https://www. umng.edu.co/proyecto-campus
dc.relation[18] E. Mejia-Ruda, J. Ferney, M. Mauledoux, O. Aviles & M. Suell, “Adaptative control for solar photovoltaic tracking system,” Appl Mech Mater, vol. 823, pp. 377–382, 2015. https://doi.org/10.4028/www.scientific. net/AMM.823.377
dc.relation[19] CONAGUA, “Índice Global de Sustentabilidad Hídrica (IGSH),” Programa Nacional Hídrico, México, CONAGUA, 2014-2018, CDMX: CONAGUA, 2014. Disponible en http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/Capitulo4.pdf
dc.relation[20] M. M. Mekonnen & W. Gerbens-Leenes, “The water footprint of global food production,” Water, vol. 12, no. 10, pp. 1–12, 2020. https://doi.org/10.3390/w12102696
dc.relation[21] A. Hoekstra, A. Chapagain, M. Aldaya & M. Mekonnen, The Water Footprint Assessment Manual: Setting the Global Standard. LDN/WA, USA: Earthscan, 2011. Available: https://waterfootprint.org/media/ downloads/TheWaterFootprintAssessmentManual_2.pdf
dc.relation[22] República de Colombia. Congreso de la República, Ley 373, del 6 de junio 6 1997 , por la cual se establece el programa para el uso eficiente y ahorro del agua, DO, No. 43.058. Available: https://www.minambiente.gov.co/images/normativa/leyes/1997/ley_0373_1997.pdf
dc.relation[23] UMNG, “Plan de uso eficiente y ahorro del recurso hídrico,” repository.unimilitar.edu.co, [online], 2017.
dc.relation[24] L. E. Cervera, “Indicadores de uso sustentable del agua en la ciudad Juárez, Chihuahua,” Est Fro, vol. 8, no. 16, pp. 9–41, 2007. https://doi.org/10.21670/ref.2007.16.a01
dc.relation[25] H. Gleik Peter, S. Postel & J. Morrison,The sustainable use of water in the lower Colorado river basin. O-Town., USA.: Pacinst, 1996.
dc.relation[26] M. F. Carreño, J. Martínez, J. Miñano, M. L. Suárez, F. Robledano, M. R. Vidal-Abarca & M. Á. Esteve, “Indicadores de sostenibilidad del agua: caso cuenca del Segura,” presentado al 6º Congreso Ibérico: gestión y planificación del agua, CIGPA, VIT, ES, 2014. Disponible en https://www.researchgate.net/ publication/233760854_Indicadores_de_Sostenibilidad_del_Agua_caso_Cuenca_del_Segura
dc.relation[27] K. H. Chen, H. C. Wang, J. L. Han, W. Z. Liu, H. Y. Cheng, B. Liang & A. J. Wang, “The Application of footprint for assessing the systainability of wastewater treatment plants: A review,” J Cle Pro, vol. 277, pp. 124053–124053, Dic. 2020. https://doi.org/10.1016/j.jclepro.2020.124053
dc.relation[28] S. Casadei, F. Peppoloni & A. Pierleoni, “A new approach to calculate the water explotation index (WEI),” Water, vol. 12, no. 10, pp. 1–16, 2020. https://doi.org/10.3390/w12113227
dc.relation[29] A. Razmjoo, N. Khalili, M. Majidi Nezhad, N. Mokhtari & A. Davarpanah, “The main role of energy sustainability indicators on the water management,” Model Earth Syst Environ, vol. 6, pp. 1419–1426, 2020. https://doi.org/10.1007/s40808-020-00758-1
dc.relation[30] IDEAM, Índice de escasez de agua superficial. Ficha Técnica, BO, COL: IDEAM, 2008. Available: https:// www.dane.gov.co/files/investigaciones/pib/ambientales/Sima/Indice.pdf
dc.relation[31] G. Mesa, Cuadros, derechos ambientales en perspectiva de integralidad. BO, CO.: UNALa, 2016.
dc.relation[32] Y. Liu, S. Wang & B. Chen, “Blue, green and grey water embodied in food supply chain in China,” Egy Pro, vol. 152, pp. 287–292, Oct. 2018. https://doi.org/10.1016/j.egypro.2018.09.125
dc.relation[33] FAO, “Evaportraspiración de cultivo: guías para la determinación de los requerimmientos de agua en los cultivos N56,” FAO, 1990. Disponible en http://world-ingenium.blogspot.com/2018/03/manual-56-faoevapotranspiracion-del.html
dc.relation[34] F. Chavarría-Solera, F. Gamboa-Venegas, F. Rodríguez-Flores, F. Chinchilla-González & F. Herrera-Araya, “Measurement of blue weater footprint in Universidad Nacional in Costa Rica from 2012 to 2016,” Uniciencia, vol. 34, no. 1, pp. 189–203, 2020. https://doi.org/10.15359/ru.34-1.11
dc.relation[35] A. Al-Muaini, O. M. Sallam, S. Green, P. Kemp & B. Clothier, “The blue and gray water footprint of date production in the saline and hyper-arid deserts of United Arab Emirates,” Irrig Sci, vol. 37, pp. 657–667, Sep. 2019. https://doi.org/10.1007/s00271-019-00642-6
dc.relation[36] República de Colombia. Congreso de la República, Resolución 631, del 18 de Abril de 2015, por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones, DO: No. 49.486. Disponible en http://www.emserchia.gov.co/PDF/Resolucion631.pdf
dc.relation[37] W. Ma, C. Opp & D. Yang, “Past, present, and future of virtual water and water footprint,” Water, vol. 12, no. 11, pp. 1–20, 2020. https://doi.org/10.3390/w12113068
dc.relation[38] A. Muratoglu, “Grey water fooprnt of agricultural production: An assessment based on nitrogen surplus and high - resolution leaching runoff fractions in Turkey,” Sci Tot Env, vol. 742, pp. 140553–140553, Nov. 2020. https://doi.org/10.1016/j.scitotenv.2020.140553
dc.relation[39] W. Wang, J. Wang & X. Cao, “Water use efficiency and sensitivity assessment for agricultural production system fro, the water footprint perspective,” Sustain, vol. 12, pp. 1–17, 2020. https://doi.org/10.3390/ su12229665
dc.relation[40] M. Mekonnen & A. Y. Hoekstra, “Sustainability of the blue water footprint of crops,” Advances in Water Resources, vol. 143, pp. 103679–103679, Sep. 2020. https://doi.org/10.1016/j.advwatres.2020.103679
dc.relation[41] IDEAM, “Validación de las fórmulas de evapotranspiración de referencia para Colombia,” IDEAM-METEO/002-2018, BO, COL: IDEAM,Dic. 2017. Available: http://www.ideam.gov.co/documents/21021/21147/ Evapotranspiracion+de+Referencia+ETo+para+Colombia.pdf/12700c18-c492-40cc-8971-46f48f144824
dc.relation[42] P. M. Cristiano, M. V. Díaz, M. S. De Diego, M. V. Lacoretz, N. Madanes & G. Goldstein, “Carbon assimilation, water consumption and water use efficiency under different land use types in subtopical ecosystems: from native forest to pine plantations,” Agr For Met, vol. 291, pp. 108094–,15 Sep. 2020. https://doi. org/10.1016/j.agrformet.2020.108094
dc.relation[43] S. Nunes, M. Gastauer, R. B. L. Cavalcante, S. J. Ramos, C. F. Caldeira Jr., D. Silva, R. R. Rodrigues, R. Salomão, M. Oliveira, P. W. M. Souza-Filho & J. O. Siqueiraa, “Challenges and oportunities for large - sclae reforestation in the Eastern Amazon using native species,” FORECO, vol. 466, pp. 118120–,15 Jun. 2020. https://doi.org/10.1016/j.foreco.2020.118120
dc.relation[44] CAR, “Histórico de series hidrometeorológicas,” car.gov.co. [online],30 Nov. 2020. Available: https://www. car.gov.co/vercontenido/2524
dc.relation101
dc.relation89
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3552
dc.subjectUniversidad
dc.subjectGestión sustentable del agua
dc.subjectHuella hídrica
dc.subjectRecurso hídrico
dc.subjectColombia
dc.subjectUniversity
dc.subjectWater management
dc.subjectWater footprint
dc.subjectWater resources
dc.titleEnvironmentally sustainable universities: the Nueva Granada Campus of the Nueva Granada Military University and its relationship with water
dc.titleUniversidades ambientalmente sustentables: la sede Campus Nueva Granada de la Universidad Militar Nueva Granada y su relación con el agua
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.coverageUniversidad Militar Nueva Granada


Este ítem pertenece a la siguiente institución