dc.creatorViego Felipe, Percy R.
dc.creatorSousa Santos, Vladimir
dc.creatorGómez Sarduy, Julio Rafael
dc.creatorMonteagudo Yanes, José Pedro
dc.creatorQuispe, Enrique C.
dc.date2023-08-23T21:24:31Z
dc.date2023-08-23T21:24:31Z
dc.date2023
dc.date.accessioned2023-10-03T18:55:31Z
dc.date.available2023-10-03T18:55:31Z
dc.identifier2088-8708
dc.identifierhttps://hdl.handle.net/11323/10399
dc.identifier10.11591/ijece.v13i3.pp2409-2418
dc.identifier2722-2578
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166194
dc.descriptionThe copper rotor induction motor (CURIM) was recently introduced because it has lower rotor fusion losses than the aluminum rotor (ALRIM). Furthermore, with CURIM, it is easier to reach IE4 and IE5 efficiency levels. The CURIM is advantageous for compact motors, escalators, and electric vehicle applications. However, CURIMs present slip, power factor, temperature increase, and torque decrease problems that must be analyzed. This study compared the economic feasibility of using CURIM with ALRIM by applying discount techniques. A case study was carried out in a sugar company with a cyclical operation, where 5.5 kW motors will be installed in the intermediate conductors of the mill's feeders. The facility works three shifts between 3 and 6 months. The cost increase (CI) of CURIM over ALRIM was between 1.1 and 1.5 times. With 3,600 h/year and 4,000 h/year of operation, the CI greater than 10%, it was found that the payback is more than four years, and the net present value (NPV) grows linearly.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitute of Advanced Engineering and Science (IAES)
dc.publisherIndonesia
dc.relationInternational Journal of Electrical and Computer Engineering
dc.relation[1] D. Liang, J. Yu, X. Yang, and V. Zhou, “Copper rotor motors in China,” in 2013 International Conference on Electrical Machines and Systems (ICEMS), Oct. 2013, pp. 2031–2034, doi: 10.1109/ICEMS.2013.6713191.
dc.relation[2] D. Liang, L. Gao, and V. Zhou, “Recent trend development for high performance copper rotor motors in China,” in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Oct. 2018, pp. 2571–2575, doi: 10.23919/ICEMS.2018.8549253.
dc.relation[3] S. Lie and C. Di Pietro, “Copper die-cast rotor efficiency improvement and economic consideration,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 419–424, 1995, doi: 10.1109/60.464863.
dc.relation[4] D. Liang, X. Yang, J. Yu, and V. Zhou, “Experience in China on the die-casting of copper rotors for induction motors,” in 2012 XXth International Conference on Electrical Machines, Sep. 2012, pp. 256–260, doi: 10.1109/ICElMach.2012.6349874.
dc.relation[5] D. T. Peters, J. G. Cowie, E. F. Brush, and D. J. Van Son, “Copper in the squirrel cage for improved motor performance,” in IEEE International Electric Machines and Drives Conference 2003, IEMDC’03, vol. 2, 2002, pp. 1265–1271, doi: 10.1109/IEMDC.2003.1210402.
dc.relation[6] S. Yamamoto, “Overview of the latest research and development for copper die-cast squirrel-cage rotors,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), May 2018, pp. 1949–1954, doi: 10.23919/IPEC.2018.8507971.
dc.relation[7] D. Liang and V. Zhou, “Recent market and technical trends in copper rotors for high-efficiency induction motors,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), May 2018, pp. 1943–1948, doi: 10.23919/IPEC.2018.8507879.
dc.relation[8] M. Thieman, R. Kamm, and J. Jorstad, “Copper motor rotors: Energy saving efficiency, now also economic feasibility,” in 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, Oct. 2007, pp. 328–333, doi: 10.1109/EEIC.2007.4562637.
dc.relation[9] R. Yabiku, R. Fialho, L. Teran, A. Santos, E. Rangel, and D. Dutra, “A comparative study between copper and aluminum induction squirrel cage constructions,” in 2010 Record of Conference Papers Industry Applications Society 57th Annual Petroleum and Chemical Industry Conference (PCIC), Sep. 2010, pp. 1–9, doi: 10.1109/PCIC.2010.5666832.
dc.relation[10] ANSI, “Motors and generators,” NEMA, 2016, Accessed Feb. 02, 2022. [Online]. Available: https://www.nema.org/docs/defaultsource/standards-document-library/ansi_nema-mg-1-2016-contents-and-foreword.pdf?sfvrsn=f27547b8_1
dc.relation[11] D. T. Peters, E. F. Brush, and J. L. Kirtley, “Die-cast copper rotors as strategy for improving induction motor efficiency,” in 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, Oct. 2007, pp. 322–327, doi: 10.1109/EEIC.2007.4562636.
dc.relation[12] Q. Zhang, H. Liu, Z. Zhang, and T. Song, “A cast copper rotor induction motor for small commercial EV traction: Electromagnetic design, analysis, and experimental tests,” CES Transactions on Electrical Machines and Systems, vol. 2, no. 4, pp. 417–424, Dec. 2018, doi: 10.30941/CESTEMS.2018.00053.
dc.relation[13] M. Popescu, N. Riviere, G. Volpe, M. Villani, G. Fabri, and L. di Leonardo, “A copper rotor induction motor solution for electrical vehicles traction system,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2019, pp. 3924–3930, doi: 10.1109/ECCE.2019.8912248.
dc.relation[14] V. Mallard, G. Parent, C. Demian, J.-F. Brudny, and A. Delamotte, “Increasing the energy efficiency of induction machines by the use of grain-oriented magnetic materials and die casting copper squirrel cage in the rotor,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1280–1289, Mar. 2019, doi: 10.1109/TIA.2018.2873532.
dc.relation[15] A. Marfoli, M. Di Nardo, M. Degano, C. Gerada, and W. Chen, “Rotor design optimization of squirrel cage induction motor-part I: problem statement,” IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1271–1279, Jun. 2021, doi: 10.1109/TEC.2020.3019934.
dc.relation[16] M. Di Nardo, A. Marfoli, M. Degano, C. Gerada, and W. Chen, “Rotor design optimization of squirrel cage induction motor-part II: results discussion,” IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1280–1288, Jun. 2021, doi: 10.1109/TEC.2020.3020263.
dc.relation[17] D. Fodorean, C.-V. Pop, and D.-C. Popa, “Electromagnetic and structural analysis of an induction motor with copper rotor bars used in automotive applications,” in 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Sep. 2021, pp. 340–345, doi: 10.1109/RTSI50628.2021.9597235.
dc.relation[18] A. T. De Almeida, F. J. T. E. Ferreira, and A. Q. Duarte, “Technical and economical considerations on super high-efficiency three-phase motors,” IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1274–1285, Mar. 2014, doi: 10.1109/TIA.2013.2272548.
dc.relation[19] P. R. Viego, J. R. Gómez, and E. A. Padrón, “New syncronous high-efficiency motors,” Universidad y Sociedad, vol. 12, no. 2, pp. 205–211, 2020. Accessed Jan. 21, 2022. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218- 36202020000200205&lng=es&tlng=es
dc.relation[20] P. R. Viego-Felipe, J. R. Gómez-Sarduy, V. Sousa-Santos, and E. C. Quispe-Oqueña, “Permanent magnet assisted synchronous reluctance motors: A new advance in electric motors development,” (in Spanish), Ingeniería, investigación y tecnología, vol. 19, no. 3, pp. 269–279, Jul. 2018, doi: 10.22201/fi.25940732e.2018.19n3.023.
dc.relation[21] P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 651–659, Feb. 2020, doi: 10.11591/ijece.v10i1.pp651-659.
dc.relation[22] G. C. Mechler, “Manufacturing and cost analysis for aluminum and copper die cast induction motors for GM’s powertrain and R&D Divisions,” Thesis, Massachusetts Institute of Technology, 2010.
dc.relation[23] A. Marfoli, M. DiNardo, M. Degano, C. Gerada, and W. Jara, “Squirrel cage induction motor: a design-based comparison between aluminium and copper cages,” IEEE Open Journal of Industry Applications, vol. 2, pp. 110–120, 2021, doi: 10.1109/OJIA.2021.3073820.
dc.relation[24] H.-R. Noh, H.-S. Shin, C.-M. Kim, and K.-C. Kim, “A study on the effect of rotor bars of induction motor for electric vehicle,” in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2021, pp. 1415–1418, doi: 10.23919/ICEMS52562.2021.9634599.
dc.relation[25] Ministerio de Justicia, “System for the formation of electricity rates for the collection of electricity service: Gaceta Oficial No. 26,” (in Spanish) Gaceta Oficial No. 26 (Extraordinaria), La Habana, Cuba, 2021. Accessed: Apr. 13, 2021. [Online]. Available: https://www.gacetaoficial.gob.cu/sites/default/files/goc-2021-ex26_0_0.pdf.
dc.relation[26] J. C. Andreas, Energy-efficient electric motors: selection and application. United States: Marcel Dekker, Inc.,New York, NY, 1982.
dc.relation[27] M. J. Landt and A. D. Reed, “Project evaluation,” in Archaeological Data Recovery in the Piceance and Wyoming Basins of Northwestern Colorado and Southwestern Wyoming, Archaeopress Publishing Ltd, 2018, pp. 333–336.
dc.relation[28] Siemens Industry, “General purpose low voltage cast iron frame motors,” Siemens Industry, USA, 2011. Accessed Dec. 13, 2021. [Online]. Available: https://assets.new.siemens.com/siemens/assets/api/uuid:ff39a5d9-875a-4f16-bf17-79beae7a11c7/nemageneral-purpose-motors-cast-iron-gp100-brochure.pdf
dc.relation[29] R. Saidur and T. M. I. Mahlia, “Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries,” Energy Policy, vol. 38, no. 8, pp. 4617–4625, Aug. 2010, doi: 10.1016/j.enpol.2010.04.017.
dc.relation[30] B. Cassoret, J. Manata, V. Mallard, and D. Roger, “Comparative life cycle assessment of induction machines made with copper‐cage or aluminium‐cage rotors,” IET Electric Power Applications, vol. 13, no. 6, pp. 712–719, Jun. 2019, doi: 10.1049/ietepa.2018.5401.
dc.relation2418
dc.relation2409
dc.relation3
dc.relation13
dc.rights© Copyright 2023 Elsevier B.V., All rights reserved.
dc.rightsAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85149151268&doi=10.11591%2fijece.v13i3.pp2409-2418&origin=inward&txGid=a31bc40dd93a23eaad300cd65a313e64
dc.subjectCopper rotor induction motor
dc.subjectEconomic feasibility
dc.subjectElectric motors
dc.subjectEnergy efficiency
dc.subjectHigh-efficiency motors
dc.titleInduction motors with copper rotor: a new opportunity for increasing motor efficiency
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución