dc.creatorMendoza Merchán, Eduardo Vicente
dc.creatorBenitez Pina, Israel Francisco
dc.creatorNúñez Alvarez, José Ricardo
dc.date2021-03-15T16:35:22Z
dc.date2021-03-15T16:35:22Z
dc.date2020-05
dc.date.accessioned2023-10-03T18:55:28Z
dc.date.available2023-10-03T18:55:28Z
dc.identifier16977920
dc.identifier16977912
dc.identifierhttps://hdl.handle.net/11323/8012
dc.identifierhttps://doi.org/10.4995/riai.2020.12301
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166183
dc.descriptionLas redes de sensores inalámbricos disponen de un campo muy amplio de aplicaciones y aún muchos desafíos pendientes, especialmente aquellos relacionados con la evolución de la electrónica digital, ancho de banda, reducción de costos de implementación, cobertura de red y capacidad de procesamiento. Este documento propone una configuración de red inalámbrica multisalto orientada a instalaciones domóticas inteligentes, basadas en microcontroladores de 32 bits y módulos de comunicación inalámbrica de bajo costo, que permita tener cobertura completa entre los dispositivos del sistema domótico con una reducida pérdida de datos, mejora en la capacidad de procesamiento, adaptabilidad y escalabilidad en los nodos. La evaluación del desempeño de la red considera las siguientes métricas: tiempo de respuesta, alcance de red, escalabilidad y precisión. Los resultados experimentales determinaron una adaptación exitosa del protocolo multisalto AODV, permitiendo una cobertura suficiente para una vivienda unifamiliar, a una velocidad de transmisión de 250Kbps, que garantiza la integridad y seguridad de los datos.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationAhmad, A., Roslan, M. F., & Amira, A., 2017. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports. In AIP Conference Proceedings (Vol. 1883, No. 1, p. 020010). AIP Publishing.
dc.relationAbdellaoui, M., Gargouri, R., Mezghani, M., 2014. Optimization of WSNs Flooding Rates by Khalimsky Topology. Transactions on Networks and Communications, 2(6), 25-38.
dc.relationAl-Haija, Q. A., Al-Qadeeb, H., & Al-Lwaimi, A., 2013. Case Study: Monitoring of AIR quality in King Faisal University using a microcontroller and WSN. Procedia Computer Science, 21, 517-521.
dc.relationAsencio, G., Maestre, J., Escaño, J., Martín Macareno, C., Molina, M., Camacho, E., 2011. Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee. Revista Iberoamericana de Automática e Informática industrial 8(4), 397-404. DOI:10.1016/j.riai.2011.09.002
dc.relationBaroudi, U., Bin-Yahya, M., Alshammari, M., Yaqoub, U., 2019. Ticketbased QoS routing optimization using genetic algorithm for WSN applications in smart grid. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1325-1338
dc.relationBelagali, R., Anusha, A. M., Sangulagi, P., 2015. Energy-Efficient Secure Routing and Aggregation in Military Sensor Network using Multi-Agent Approach. In Applied and Theoretical Computing and Communication Technology (iCATccT), 2015 International Conference on 286-292. IEEE. DOI: 10.1109/ICATCCT.2015.7456897
dc.relationBenítez, J. D., Sosa, E. O., Godoy, D. A., Belloni, E. A., Favret, F., Bareiro, H., Urdinola, R., Olivera, M., 2017. Ampliando la Vida Útil de las WSN por Medio de los Protocolos de Ruteo, Modificación de AODV. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires). URL: http://sedici.unlp.edu.ar/handle/10915/61567
dc.relationBondorf, S., Jens, B. S., 2010. Statistical response time bounds in randomly deployed wireless sensor networks. In Local Computer Networks (LCN). IEEE 35th Conference on 340-343. IEEE. DOI: 10.1109/LCN.2010.5735738
dc.relationCampamá, D. S., 2012. Sistema operativo para redes inalámbrica de sensores. Tesis de maestría, Pontificia Universidad católica de Chile. URL: https://repositorio.uc.cl/handle/11534/1723
dc.relationDi Nisio, A., Di Noia, T., Carducci, C. G. C., & Spadavecchia, M., 2016. High dynamic range power consumption measurement in microcontroller-based applications. IEEE Transactions on Instrumentation and Measurement, 65(9), 1968-1976.
dc.relationEscribano, J., García, A., de la Fuente, M., 2011. Monitorización de la Condición Física de Personas en Espacios Confinados Mediante Etiquetas RFID con Sensores y Redes Inalámbricas Eficientes. Revista Iberoamericana de Automática e Informática industrial 8(4), 371-384.
dc.relationEspressif Systems, 2018. ESP8266 Non-OS SDK. Version 3.0. URL: https://www.espressif.com/sites/default/files/documentation/2cesp8266_non_os_sdk_api_reference_en.pdf
dc.relationEspressif, 2016. ESP8266 Mesh User Guide. Version 1.2. URL: https://docplayer.net/33922006-Esp8266-mesh-user-guide.html
dc.relationFajriansyah, B., Ichwan, M., & Susana, R., 2016. Evaluasi Karakteristik XBee Pro dan nRF24L01 sebagai Transceiver Nirkabel. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, 4(1), 83
dc.relationFischione, C., 2014. An Introduction to Wireless Sensor Networks. Royal Institute of technology. Draft, version 1.8. URL: https://www.kth.se/social/files/5431a388f276540a05ad2514/An_Introduc tion_WSNS_V1.8.pdf
dc.relationGarcía, D., 2015. Estudio de 6loWPAN para su aplicación a Internet de las Cosas. Trabajo de fin de grado. URL: https://riull.ull.es/xmlui/bitstream/handle/915/945/Estudio+de+6loWPAN +para+su+aplicacion+a+Internet+de+las+Cosas.pdf?sequence=1
dc.relationHong, S. H., Kim, B., Eom, D. S., 2007. A base-station centric data gathering routing protocol in sensor networks useful in home automation applications. IEEE Transactions on Consumer Electronics 53(3), 945- 951. DOI: 10.1109/TCE.2007.4341570
dc.relationHsieh, F. S., Lin, J. B., 2014. A multiagent approach for managing collaborative workflows in supply chains. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 71-76. IEEE. DOI: 10.1109/CSCWD.2014.6846819
dc.relationJaggi, S., and Wasson, E., 2016. Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN. Industrial Engineering & Management Systems, 15(3), 259-267
dc.relationKailas, A., Cecchi, V., & Mukherjee, A., 2012. A survey of communications and networking technologies for energy management in buildings and home automation. Journal of Computer Networks and Communications, 2012(932181), 1-6. DOI: 10.1155/2012/932181
dc.relationKelly, S. D. T., Suryadevara, N. K., Mukhopadhyay, S. C., 2013.Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. IEEE Sensors Journal 13(10), 3846-3853. DOI: 10.1109/JSEN.2013.2263379
dc.relationLi, M., Lin H. J., 2015. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Transactions On Industrial Electronics 62(7). 4430-4442. DOI: 10.1109/TIE.2014.2379586
dc.relationLiao, C., Zhu, K., Tang, J., Zhang, S., 2016. Wireless Sensor Network Performance Research for LEACH Based on Multi-Agent Simulation. IEEE International Conference on Agents (ICA) 98-99. IEEE. DOI: 10.1109/ICA.2016.031
dc.relationLópez Torres, V. 2014. Diseño de un modelo de red domótica libre basada en componentes OpenDomo para aplicación a un pequeño hotel
dc.relationMagno, M., Polonelli, T., Benini, L., Popovici, E., 2015. A Low Cost, Highly Scalable Wireless Sensor Network Solution to Achieve Smart LED Light Control for Green Buildings. IEEE Sensors Journal 15(5), 2963-2973. DOI: 10.1109/JSEN.2014.2383996
dc.relationManda, S., Shukla, Y., Shrivastava, K., Patil, T. B., & Sawant-Patil, S. T., 2018. A Literature Survey on Wireless Sensor Network in Home Automation Based on Internet of Things
dc.relationMedina, C., 2017. Control de Congestión en Redes Inalámbicas de Sensores. Tesis de maestría, Pontificia Universidad Javeriana. Bogota - Colombia
dc.relationMezghani, M., Abdellaoui, P., 2015. WSN intelligent communication based on Khalimsky theory using multi-agent systems. In 2015 SAI Intelligent Systems Conference (IntelliSys) (pp. 871-876). IEEE
dc.relationMicrochip, 2020. URL: https://www.microchip.com/wwwproducts/en/ PIC16F628A
dc.relationMostafaei, H., 2019. Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-5575.
dc.relationNarten, T., Nordmark, E., Simpson, W., Soliman, H., 2007. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, DOI 10.17487/RFC4861
dc.relationNLNRXNaU, A., Ra]a, S., PRROH, A., G QHú, M., & DH]IRXOL, B., 2018. LRZpower wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893-67926
dc.relationNordic Semiconductor. (2008). nRF24L01 Single Chip 2.4GHz Transceiver. URL: https://www.nordicsemi.com/DocLib?Product=nRF24
dc.relationNúñez, José Ricardo et al., 2019. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática industrial, [S.l.], v. 17, n. 1, p. 94-105. https://doi.org/10.4995/riai.2019.11449
dc.relationNuñez, J. R., Benítez, I.F., Rodriguez, A., Diaz, S., Oliveira, D., 2019. Tools for the implementation of a SCADA system in a desalination process. IEEE Latin America Transactions, 17(11), 1858-1864. DOI: 10.1109/TLA.2019.8986424
dc.relationPaavola, M., Leiviska, K., 2010. Wireless Sensor Networks in Industrial Automation. In Factory Automation. InTech. DOI: 10.5772/9532.
dc.relationPeñín, P., Díaz, A., Medina, J., Sánchez P., 2017. High-Level Design of Wireless Sensor Networks for Performance Optimization Under Security Hazards. ACM Transactions on Sensor Networks (TOSN) 13(3), 19. DOI: 10.1145/3078359.
dc.relationPerkins, C., Belding, E., Das, S., 2003. Ad hoc On-Demand Distance Vector (AODV) Routing. (No. RFC 3561). DOI: 10.17487/RFC3561
dc.relationPosadas Yagüe, J. L., & Poza Luján, J. L. (2009). Revisión de las arquitecturas de control distribuido. URL: https://riunet.upv.es/handle/10251/6407
dc.relationQin, J., Fu, W., Gao, H., Xing W., 2016. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory. IEEE transactions on cybernetics, 47(3), 772-783. DOI: 10.1109/TCYB.2016.2526683.
dc.relationRandhawa, S., 2014. Research Challenges in Wireless Sensor Network: A State of the Play. Conference Proceeding of National Conference of Science, Engineering y Management in Education and Research. arXiv preprint arXiv:1404.1469v1 [cs.NI]
dc.relationRawat, P., Singh, K. D., Chaouchi, H., Bonnin, J. M., 2014. Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing 68(1), 1-48. DOI:10.1007/s11227-013-1021-9
dc.relationRodríguez, A., 2011. Sistemas SCADA. Tercera Edición. Marcombo: Barcelona. ISBN: 978-8426717818
dc.relationSaha, Himadri & Mandal, Shashwata & Mitra, Shinjan & Banerjee, Soham & Saha, Urmi., 2017. Comparative Performance Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks. International Journal of Computer Network and Information Security. 9. 36-44. 10.5815/ijcnis.2017.07.05.
dc.relationSaravanan, S., Poovazhaki, R., Shanker, N., 2018. Cluster Topology in WSN with SCPS for QoS. Wireless Personal Communications, 99(3), 1295- 1314.
dc.relationSTMicroelectronics, 2018. STM32F103xC STM32F103x, STM32F103xE. DS5792 Rev 13. URL: https://www.st.com/resource/en/datasheet/stm32f103rc.pdf
dc.relationSTMicroelectronics, 2019. STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC. DS9773 Rev 4. URL: https://www.st.com/resource/en/datasheet/stm32f030f4.pdf
dc.relationSnigdh, I., & Gupta, N. 2016. Quality of service metrics in wireless sensor networks: A survey. Journal of The Institution of Engineers (India): Series B, 97(1), 91-96.
dc.relationSuárez, A., and Núñez, J. R., 2019. 1D Convolutional Neural Network for Detecting Ventricular Heartbeats. IEEE Latin America Transactions, 17(12), 1970-1977. DOI: 10.1109/TLA.2019.9011541
dc.relationSutagundar, A., Bennur, V., Anusha, A., Bhanu, K., 2016. Agent Based Fault Tolerance in Wireless Sensor Networks. 2016 International Conference on Inventive Computation Technologies (ICICT) 1, 1-6. IEEE
dc.relationValencia, G., Núñez, J., Vanegas, M., 2020. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia. Data in Brief, 27, 104753. DOI: 10.1016/j.dib.2019.104753
dc.relationVidhya, S., Sasilatha, T., 2018. Secure Data Transfer Using Multi Layer Security Protocol with Energy Power Consumption AODV in Wireless Sensor Networks. Wireless Personal Communications, 103(4), 3055- 3077.
dc.relationVillarrubia, G., De Paz, J., De La Iglesia, D., Bajo, J., 2017. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. 17(8), 1775. DOI: https://doi.org/10.3390/s17081775
dc.relationWadhwa, L., Deshpande, R., Priye, V., 2016. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37, 295- 300.
dc.relationYang, S.H., 2014. Wireless Sensor Network. Londres, Reino Unido: Springer. ISBN 978-1-4471-5505-8
dc.relationYu, K., Xie, Z., Qian, J., y Jin, G., 2013. The Implementation of Electronic Intelligent Tag System Based on Wireless Sensor Network. Communications and Network 5(01), 39. Doi:10.4236/cn.2013.51B010
dc.relationZhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M., 2018. A survey on fault diagnosis in wireless sensor networks. IEEE Access, 6, 11349-11364
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceRIAI - Revista Iberoamericana de Automatica e Informatica Industrial
dc.sourcehttps://polipapers.upv.es/index.php/RIAI/article/view/12301
dc.subjectSensores
dc.subjectRedes
dc.subjectSistemas de comunicaciones
dc.subjectRedes de comunicaciones
dc.subjectMicroprocesadores
dc.subjectArquitecturas
dc.subjectControl distribuido
dc.titleNetwork of multi-hop wireless sensors for low cost and extended area home automation systems
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución