dc.creatorAlviz-Meza, Anibal
dc.creatorDuong, Adam
dc.creatorOrozco-Agamez, Juan
dc.creatorKafarov, Viatcheslav
dc.creatorCárdenas-Escorcia, Yulineth
dc.creatorCarrillo-Caballero, Gaylord
dc.creatorPeña-Ballesteros, Darío
dc.date2021-08-11T15:59:37Z
dc.date2021-08-11T15:59:37Z
dc.date2021
dc.date.accessioned2023-10-03T18:55:00Z
dc.date.available2023-10-03T18:55:00Z
dc.identifierhttps://hdl.handle.net/11323/8514
dc.identifierhttps://doi.org/10.1016/j.jmrt.2021.04.071
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9166063
dc.descriptionP91 ferritic steel pipes face dual environments during boilers operation: steam-side and fire-side. This P91 steel assessment differs from the dual studies performed to simulate coal-fired boilers -oxyfuel/steam atmospheres- since the fuel source is replaced by natural gas. This research work includes designing a device to reproduce dual corrosion studies at 650 °C and testing times up to 200 h. One coupon face was exposed to combustion gases while the other to steam. As a main result, the duplex's inner layer allowed to state that combustion gases overcome the steam oxidation rate by a factor of 1.6. Besides, we supplied physical-chemistry information about the surface and bulk of oxide layers by atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Thus, our experiments aimed to obtain data about the P91 early degradation under the simultaneous 72.73N2/8.30CO2/3.37O2/15.60H2O %mol and steam influence. We last for a future work the isolated evaluation of both environments to determine their role on the corrosion rate obtained in the current study.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationT. Sasaki, K. Kobayashi, T. Yamaura, T. Kasuya, T. Masuda Production and properties of seamless modified 9Cr-1Mo steel boiler tubes Kawasaki Steel Tech Rep, 25 (1991), pp. 78-87
dc.relationI. Le May, “Creep and fracture of engineering materials and structures Mater Char, 33 (2003), p. 79
dc.relationF. Noble, B. Senior, B. Eyre The effect of phosphorus on the ductility of 9Cr-1Mo steels Acta Metall Mater, 38 (5) (May 1990), pp. 709-717
dc.relationH. Nickel, P.J. Ennis, W.J. Quadakkers The creep rupture properties of 9% chromium steels and the influence of oxidation on strength Miner Process Extr Metall Rev, 22 (1–2) (2001), pp. 181-195
dc.relationA. Fabricius, P. Jackson Premature Grade 91 failures — worldwide plant operational experiences Eng Fail Anal (1–9) (2016)
dc.relationG. Ju, W. Wu, S. Dai Failure of 9Cr-1Mo tubes in a feed furnace of dehydrogenation unit Int J Pres Ves Pip, 74 (3) (1997), pp. 199-204
dc.relationT. Kurniawan, F.A.B. Fauzi, Y.P. Asmara “High-temperature oxidation of fe-cr steels in steam condition – a review Indones. J. Sci. Technol., 1 (1) (2016), pp. 107-114
dc.relationA. Shibli, F. Starr Some aspects of plant and research experience in the use of new high strength martensitic steel P91 Int J Pres Ves Pip, 84 (1–2) (2007), pp. 114-122
dc.relationK. Nakagawa, Y. Matsunaga, T. Yanagisawa Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment Mater A T High Temp, 20 (1) (2003), pp. 67-73
dc.relationK. Nakagawa, Y. Matsunaga, T. Yanagisawa Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment Mater A T High Temp, 18 (1) (2001), pp. 51-56
dc.relationK. Chandra, A. Kranzmann “High temperature oxidation of 9 – 12 % Cr ferritic/martensitic steels under dual-environment conditions Corrosion Eng Sci Technol, 53 (S1) (2018), pp. 27-33
dc.relationM. Mosquera-Feijoo Influence of surface ash layer on dual corrosion Doctoral dissertation Universidade de Vigo, Vigo (2019)
dc.relationA. Alviz-Meza, V. Kafarov, D.Y. Peña-ballesteros “Evaluation of corrosion damage obtained during the combustion process in a boiler. Case Study : ferritic ASTM A335 P91 steel Chem. Eng. Trans., 70 (2018), pp. 1093-1098
dc.relationM. Dunder, I. Samardzic, T. Vuherer Weldability investigation steel P91 by weld thermal cycle simulation Metalurgija, 54 (3) (2015), pp. 539-542
dc.relationM. Durand-Charre, “The basic phase diagrams,” in The microestructure of steels and cast irons, Ed. Springer, pp. 51–73.
dc.relationN.E. Zavaleta, H. De Cicco, C. Danón Influencia del tiempo de revenido a 780 ºC sobre la resistencia al creep del acero ASTM A335 P91 Materia, 23 (2) (2018), pp. 1-8
dc.relationT. Gheno, D. Monceau, J. Zhang, D.J. Young Carburisation of ferritic Fe-Cr alloys by low carbon activity gases Corrosion Sci, 53 (9) (2011), pp. 2767-2777
dc.relationASTM Internacional Standard test methods for determining average grain size: E112 - 10 ” (2004)
dc.relationK. Delura, P. Bylina, M. Jele, J. Kruczyk Mineralogy and magnetism of Fe – Cr spinel series minerals from podiform chromitites and dunites from Tapadła ( Sudetic ophiolite , SW Poland) and their relationship to palaeomagnetic results of the dunites Geophys J Int, 175 (2008), pp. 885-900
dc.relationJ. Moulder, W. Stickle, P. Sobol, K. Bomben Handbook of X-ray photoelectron spectroscopy Eden Prairie, United States of America: Perkin- Elmer Corporation (1992)
dc.relationNITS, “National Institute of Standards and Technology NIST X-ray photoelectron spectroscopy (XPS) database,” (2012) [Online]. Available: https://srdata.nist.gov/xps/main_search_menu.aspx, Accessed 30th Mar 2021 Accessed
dc.relationM. Bravo, J. Huerta, D. Cabrera, A. Herrera Composition assessment of ferric oxide by accurate peak fitting of the Fe 2p photoemission spectrum Surf Interface Anal, 49 (4) (2016), pp. 253-260
dc.relationD. Young High temperature oxidation and corrosion of metals (1st ed.), Cambridge: Department of Materials Science and Metallurgy, University, Cambridge (2008)
dc.relationNace International Standard recommended practice: preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operation (2005), p. 775 Houston, RP
dc.relationG.H. Meier, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J.P. Abellán, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr -X alloys Oxid Metals, 74 (5–6) (2010), pp. 319-340
dc.relationJ. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments Corrosion Sci, 48 (11) (2006), pp. 3428-3454
dc.relationJ. Quadakkers, W.J. Zurek Shreir's corrosion: oxidation in steam and steam/hydrogen environments, vol. 1 (2010), pp. 407-456
dc.relationW.J. Quadakkers, P.J. Ennis, J. Zurek, M. Michalik Steam oxidation of ferritic steels - laboratory test kinetic data Mater A T High Temp, 22 (1–2) (2005), pp. 47-60
dc.relationS. Saunders, M. Monteiro, F. Rizzo The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review Prog Mater Sci, 53 (5) (2008), pp. 775-837
dc.relationP. Ennis, W. Quadakkers Mechanisms of oxidation and the influence of steam oxidation on service life of steam power plant components Woodhead Publishing, Cambridge (2008)
dc.relationF. Pérez, S. Castañeda Study of oxyhydroxides formation on P91 ferritic steel and CVD-FBR coated by Al in contact with Ar + 40% H2O at 650 °C by by TG-mass spectrometry Surf Coating Technol, 201 (2007), pp. 6239-6246
dc.relationF. Pérez, S. Castañeda Study by means of the mass spectrometry of volatile species in the oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and ferritic/martensitic steel samples at 923 K in Ar+(10 to 80%)H2O vapor atmosphere for new-materials design Oxid Metals, 66 (5–6) (2006), pp. 231-251
dc.relationE.J. Opila, N.S. Jacobson, D.L. Myers, E.H. Copland Predicting oxide stability in high-temperature water vapor Jom, 58 (January) (2006), pp. 22-28
dc.relationM. Michalik, M. Hansel, J. Zurek, L. Singheiser, W.J. Ouadakkers Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low, vol. 67, Forschungszentrums Jülich (2007)
dc.relationA. Rahmel, J. Tobolski Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen Corrosion Sci, 5 (5) (1965), pp. 333-346
dc.relationL. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, K. Rousseau “Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C : detailed analysis of the inner oxide layer Corrosion Sci, 100 (2015), pp. 253-266
dc.relationR.P. Oleksak, M. Kapoor, D. Perea, G. Holcomb, O. Dogan The role of metal vacancies during high-temperature oxidation of alloys npj Mater. Degrad., 2 (1) (2018), p. 25
dc.relationS. Swaminathan, C. Mallika, N. Gopala, C. Thinaharan, T. Jayakumar, K. Mudali Evolution of surface chemistry and morphology of oxide scale formed during initial stage oxidation of modified 9Cr – 1Mo steel Corrosion Sci, 79 (2014), pp. 59-68
dc.relationC. Anghel, E. Hörnlund, G. Hultquist, M. Limbäck Gas phase analysis of CO interactions with solid surfaces at high temperatures Appl Surf Sci, 233 (1–4) (2004), pp. 392-401
dc.relationK. Chandra, I. Dörfel, N. Wollschläger, A. Kranzmann Microstructural investigation using advanced TEM techniques of inner oxide layers formed on T92 steel in oxyfuel environment Corrosion Sci, 148 (2019), pp. 94-109
dc.relationX. Zheng, D. Young High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres Oxid Metals, 42 (1994), pp. 163-190
dc.relationJ. Piro, T. Olszewski, H. Penkalla, G. Meier, L. Singheiser, W. Quadakkers Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments Mater A T High Temp, 26 (1) (2009), pp. 63-72
dc.relationM.R. Taylor, J.M. Calvert, D.G. Lees, D.B. Meadowcroft The mechanism of corrosion of Fe-9 % Cr alloys in carbon dioxide Oxid Metals, 14 (6) (1980), pp. 499-516
dc.relationT. Gheno, D. Monceau, J. Zhang, D.J. Young Carburisation of ferritic Fe-Cr alloys by low carbon activity gases Corrosion Sci, 53 (2011), pp. 2767-2777
dc.relationA. Alviz-Meza, J. Sanabria-Cala, V. Kafarov, D.Y. Peña-Ballesteros Study of continuous corrosion on ASTM A335 P91 steel in an environment of CO2-O2-N2-H2O derived from the theoretical combustion products of a mixture of refining gases at high temperatures Chem. Eng. Trans., 70 (2018), pp. 1069-1074
dc.relationG. Lai High temperature corrosion and materials applications (1st ed.), ASM Internacional (2007)
dc.relationK. Kaya, S. Hayashi, S. Ukai High-temperature oxidation behavior of 9Cr ferritic-steel in carbon dioxide ISIJ Int, 54 (6) (2014), pp. 1379-1385
dc.relationX.G. Zheng, D.J. Young Corrosion of pure in CO-CO2-SO2-N2 atmospheres Corrosion Sci, 36 (12) (1994), pp. 1999-2015
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Materials Research and Technology
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2238785421004154?via%3Dihub
dc.subjectGas-fired boiler
dc.subjectDual environment
dc.subjectSteam
dc.subjectCombustion gases
dc.subjectCorrosion rate
dc.titleStudy of early P91 dual corrosion in steam and simulated combustion gases from a gas-fired boiler
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución