dc.contributorBarra, Luis Paulo da Silva
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782989Z6
dc.contributorLobosco, Marcelo
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763963U7
dc.contributorBastos, Flávia de Souza
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4700363A9
dc.contributorToledo, Elson Magalhães
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783425Y7
dc.contributorHecke, Mildred Ballin
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780229J0
dc.creatorRodrigues, Daiana Aparecida
dc.date2016-04-24T03:34:16Z
dc.date2016-04-11
dc.date2016-04-24T03:34:16Z
dc.date2013-08-29
dc.date.accessioned2023-09-29T16:43:20Z
dc.date.available2023-09-29T16:43:20Z
dc.identifierhttps://repositorio.ufjf.br/jspui/handle/ufjf/1153
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9138182
dc.descriptionBiological phenomena are all and any event that can be observed in living beings. The study of these phenomena enables us to propose explanations for its mechanisms in order to understand causes and e ects. One can cite as examples of biological phenomena the behavior of cells as respiration, reproduction, metabolism and cell death. Reactiondi usion equations are often used to model biological phenomena. Reaction-di usion systems can produce stable spatial patterns from a uniform initial distribution, this phenomenon is known as Turing instability. This dissertation presents an analysis of the Turing instability as well as numerical results for the solution of three biological models, model Schnakenberg, model of glycolysis and model of blood coagulation. The Schnakenberg model is used to describe an autocatalytic chemical reaction and glycolysis model refers to the process of metabolic breakdown of the glucose molecule to provide energy for cellular metabolism, these two models are frequently reported in the literature. The third model is newer and describes the phenomenon of blood coagulation. The method of lines is used in the numerical solutions, where the spatial discretization is done through a nite di erence scheme. The resulting system of ordinary di erential equations is then solved by an adaptive integration scheme with the use of the package for scienti c computing of Python language, Scipy.
dc.descriptionFenômenos biológicos são todo e qualquer evento que possa ser observado nos seres vivos. O estudo desses fenômenos permite propor explicações para o seu mecanismo, a m de entender as causas e efeitos. Pode-se citar como exemplos de fenômenos biológicos o comportamento das células como respiração, reprodução, metabolismo e morte celular. Equações de reação-difusão são frequentemente utilizadas para modelar fenômenos bioló- gicos. Sistemas de reação-difusão podem produzir padrões espaciais estáveis a partir de uma distribuição inicial uniforme esse fenômeno é conhecido como instabilidade de Turing. Este trabalho apresenta a análise da instabilidade de Turing bem como resultados numéricos para a solução de três modelos biológicos, modelo de Schnakenberg, modelo de glicólise e modelo da coagulação sanguínea. O modelo de Schnakenberg é utilizado para descrever uma reação química autocatalítica e o modelo de glicólise é relativo ao processo de degradação metabólica da molécula de glicose para proporcionar energia para o metabolismo celular, esses dois modelos são frequentemente relatados na literatura. O terceiro modelo é mais recente e descreve o fenômeno da coagulação sanguínea. Nas soluções numéricas se utiliza o método das linhas onde a discretização espacial é feita através de um esquema de diferenças nitas. O sistema de equações diferencias ordinárias resultante é resolvido por um esquema de integração adaptativo, com a utilização de pacote para computação cientí ca da linguagem Python, Scipy.
dc.descriptionCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Juiz de Fora
dc.publisherBrasil
dc.publisherICE – Instituto de Ciências Exatas
dc.publisherPrograma de Pós-graduação em Modelagem Computacional
dc.publisherUFJF
dc.rightsAcesso Aberto
dc.subjectSistemas de Equações Reação-Difusão
dc.subjectFenômenos Biológicos
dc.subjectEquações Diferenciais Parciais
dc.subjectMétodo das Diferenças Finitas
dc.subjectSystems of Reaction-Diffusion Equations
dc.subjectBiological Phenomena
dc.subjectPartial Differential Equations
dc.subjectMethod of Finite Differences
dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA
dc.titleModelagem e solução numérica de equações reação-difusão em processos biológicos
dc.typeDissertação


Este ítem pertenece a la siguiente institución