Otro
Kappa-PSO-ARTMAP Fuzzy: uma metodologia para detecção de intrusos baseado em seleção de atributos e otimização de parâmetros numa rede neural ARTMAP Fuzzy
Registro en:
ARAUJO, Nelcileno Virgilio de Souza. Kappa-PSO-ARTMAP Fuzzy: uma metodologia para detecção de intrusos baseado em seleção de atributos e otimização de parâmetros numa rede neural ARTMAP Fuzzy. 2013. 110 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2013.
araujo_nvs_dr_ilha.pdf
000720294
33004099080P0
Autor
Araujo, Nelcileno Virgilio de Souza
Resumen
Nos últimos anos têm-se percebido um forte crescimento no uso da tecnologia sem fio 802.11 (Wireless Local Area Network - WLAN) e os mecanismos de segurança implementados pelas emendas IEEE 802.11i e IEEE 802.11w têm se mostrado pouco eficazes no combate a ataques contra a disponibilidade dos serviços da WLAN. Os sistemas detectores de intrusão surgem como uma forma de auxiliar as redes de computadores neste combate contra a indisponibilização dos serviços. Nesta tese é proposto um modelo de detecção de intrusos chamado Kappa-PSO-ARTMAP Fuzzy, onde primeiramente a base de dados original é pré-processada, por meio de uma técnica de seleção de atributos baseada em rede neural ARTMAP Fuzzy e coeficiente Kappa, para reduzir a quantidade de atributos, deixando apenas as características mais representativas. A seguir, aplica-se a técnica de otimização por enxame de partículas (particle optimization swarm – PSO) na seleção de um conjunto de critérios (parâmetro de escolha, parâmetro de vigilância do módulo ARTa, taxa de treinamento e acréscimo do parâmetro de vigilância do módulo ARTa) empregados no treinamento do classificador de ataques, de forma a maximizar a identificação correta de amostras classificadas. O algoritmo de detecção de intrusos empregado no classificador de ataques é a rede neural ARTMAP Fuzzy. O desempenho desta nova estratégia é avaliado sobre três bases de dados coletadas respectivamente de uma rede simulada cabeada, uma rede infraestruturada sem fio com criptografia WEP (Wired Equivalent Privacy) e WPA (WiFi Protected Access) habilitadas e uma rede infraestruturada sem fio com criptografia WPA2 (WiFi Protected Access version 2) habilitada. Os resultados obtidos na avaliação da metodologia Kappa-PSO-ARTMAP Fuzzy demonstram a diminuição... In the last years have seen a strong increase in the 802.11 wireless local area network (WLAN) technologies use, and the security mechanisms implemented by amendments IEEE 802.11i and IEEE 802.11w have proven not very effective in combating attacks against availability of WLAN services. Intrusion detection systems emerge as a way to help computer networks in this combat against the deny of services. In this thesis it's proposed a model of intrusion detection called Kappa-PSO-Fuzzy ARTMAP, where initially the original database is pre-processed through a feature selection technique based on ARTMAP Fuzzy neural network and Kappa coefficient for reduce the amount of attributes, leaving only the most representative features. Then, apply the particle swarm optimization (PSO) technique in searching a set of criteria (choice parameter, ARTa module vigilance parameter, training rate and increase in the ARTa module vigilance paramater) employees in training attacks classifier, in order to maximize the accurate identification of classified samples. The intrusion detection algorithm used in the attacks classifier is the ARTMAP Fuzzy neural network. The performance of this new strategy is evaluated over three colleted databases respectively in a simulated wired network, infrastructured wireless network with WEP (Wired Equivalent Privacy) and WPA (WiFi Protected Access) encryption enabled and infrastructured wireless network with WPA2 (WiFi Protected Access version 2) encryption enabled. The obtained results in the Kappa-PSO-ARTMAP Fuzzy methodology demonstrate the IDS computational cost reduction without causing... (Complete abstract click electronic access below)