dc.creatorSaúde, André Vital
dc.creatorCouprie, Michel
dc.creatorLotufo, Roberto A.
dc.date2017-02-16T12:37:38Z
dc.date2017-02-16T12:37:38Z
dc.date2009-03-03
dc.date.accessioned2023-09-28T20:08:12Z
dc.date.available2023-09-28T20:08:12Z
dc.identifierSAÚDE, A.; COUPRIE, M. ; LOTUFO, R. A. Discrete 2D and 3D euclidean medial axis in higher resolution. Image and Vision Computing, [S. l.], v. 27, n. 4, p. 354-363, Mar. 2009.
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0262885608001054?np=y&npKey=29e1615b046e28758e2710cf0054c51aec14be3810565d2b3b1b8778d40517ee
dc.identifierhttp://repositorio.ufla.br/jspui/handle/1/12285
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9045325
dc.descriptionThe notion of skeleton plays a major role in shape analysis. Some usually desirable characteristics of a skeleton are: centered, thin, homotopic, and sufficient for the reconstruction of the original object. The Euclidean medial axis presents all these characteristics in a continuous framework. In the discrete case, the exact Euclidean medial axis (MA) is also sufficient for reconstruction and centered. It no longer preserves homotopy but it can be combined with a homotopic thinning to generate homotopic skeletons. The thinness of the MA, however, may be discussed. In this paper, we present the definition of the exact Euclidean medial axis in higher resolution, which has the same properties as the MA but with a better thinness characteristic, against the price of rising resolution. We provide and prove an efficient algorithm to compute it.
dc.languageen_US
dc.publisherElsevier
dc.rightsrestrictAccess
dc.sourceImage and Vision Computing
dc.subjectComputer algorithms
dc.subjectEuclidean distance (Computer science)
dc.subjectMedial axis
dc.subjectSkeleton (Computer science)
dc.subjectAlgorítmos computacionais
dc.subjectDistância euclideana (Computação)
dc.titleDiscrete 2D and 3D euclidean medial axis in higher resolution
dc.typeArtigo


Este ítem pertenece a la siguiente institución