dc.creatorBroche, Osnel
dc.creatorGonçalves, Jairo Z.
dc.creatorDel Río, Ángel
dc.date2019-06-04T13:06:32Z
dc.date2019-06-04T13:06:32Z
dc.date2018-10
dc.date.accessioned2023-09-28T20:01:26Z
dc.date.available2023-09-28T20:01:26Z
dc.identifierBROCHE, O.; GONÇALVES, J. Z.; DEL RÍO, Á. Group algebras whose units satisfy a laurent polynomial identity. Archiv der Mathematik, [S.l.], v. 111, n. 4, p. 353 - 367, Oct. 2018.
dc.identifierhttps://link.springer.com/article/10.1007/s00013-018-1223-8
dc.identifierhttp://repositorio.ufla.br/jspui/handle/1/34598
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9042607
dc.descriptionLet KG be the group algebra of a torsion group G over a field K. We show that if the units of KG satisfy a Laurent polynomial identity, which is not satisfied by the units of the relative free algebra K[α,β:α2=β2=0] , then KG satisfies a polynomial identity. This extends Hartley’s Conjecture which states that if the units of KG satisfy a group identity, then KG satisfies a polynomial identity. As an application we prove that if the units of KG satisfy a Laurent polynomial identity whose support has cardinality at most 3, then KG satisfies a polynomial identity.
dc.languageen_US
dc.publisherSpringer
dc.rightsrestrictAccess
dc.sourceArchiv der Mathematik
dc.subjectGroup rings
dc.subjectPolynomial identities
dc.subjectLaurent identities
dc.titleGroup algebras whose units satisfy a laurent polynomial identity
dc.typeArtigo


Este ítem pertenece a la siguiente institución