| dc.creator | Broche, Osnel | |
| dc.creator | Gonçalves, Jairo Z. | |
| dc.creator | Del Río, Ángel | |
| dc.date | 2019-06-04T13:06:32Z | |
| dc.date | 2019-06-04T13:06:32Z | |
| dc.date | 2018-10 | |
| dc.date.accessioned | 2023-09-28T20:01:26Z | |
| dc.date.available | 2023-09-28T20:01:26Z | |
| dc.identifier | BROCHE, O.; GONÇALVES, J. Z.; DEL RÍO, Á. Group algebras whose units satisfy a laurent polynomial identity. Archiv der Mathematik, [S.l.], v. 111, n. 4, p. 353 - 367, Oct. 2018. | |
| dc.identifier | https://link.springer.com/article/10.1007/s00013-018-1223-8 | |
| dc.identifier | http://repositorio.ufla.br/jspui/handle/1/34598 | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9042607 | |
| dc.description | Let KG be the group algebra of a torsion group G over a field K. We show that if the units of KG satisfy a Laurent polynomial identity, which is not satisfied by the units of the relative free algebra K[α,β:α2=β2=0] , then KG satisfies a polynomial identity. This extends Hartley’s Conjecture which states that if the units of KG satisfy a group identity, then KG satisfies a polynomial identity. As an application we prove that if the units of KG satisfy a Laurent polynomial identity whose support has cardinality at most 3, then KG satisfies a polynomial identity. | |
| dc.language | en_US | |
| dc.publisher | Springer | |
| dc.rights | restrictAccess | |
| dc.source | Archiv der Mathematik | |
| dc.subject | Group rings | |
| dc.subject | Polynomial identities | |
| dc.subject | Laurent identities | |
| dc.title | Group algebras whose units satisfy a laurent polynomial identity | |
| dc.type | Artigo | |