dc.creatorChaves, Marcio Fialho
dc.creatorErcole, Grey
dc.creatorMiyagaki, Olimpio Hiroshi
dc.date2020-11-16T21:22:10Z
dc.date2020-11-16T21:22:10Z
dc.date2015-02
dc.date.accessioned2023-09-28T20:01:24Z
dc.date.available2023-09-28T20:01:24Z
dc.identifierCHAVES, M. F.; ERCOLE, G.; MIYAGAKI, O. H. Existence of a nontrivial solution for the (p, q) Laplacian in RN without the Ambrosetti–Rabinowitz condition. Nonlinear Analysis: Theory, Methods & Applications, [S.I.], v. 114, p. 133-141, Feb. 2015. DOI: https://doi.org/10.1016/j.na.2014.11.010.
dc.identifierhttps://doi.org/10.1016/j.na.2014.11.010
dc.identifierhttp://repositorio.ufla.br/jspui/handle/1/45525
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9042592
dc.descriptionIn this paper we prove the existence of at least one nonnegative nontrivial weak solution in D1,p (R N ) ∩ D1,q (R N ) for the equation −∆pu − ∆qu + a(x)|u| p−2 u + b(x)|u| q−2 u = f(x, u), x ∈ R N , where 1 < q < p < q ⋆ := Nq N−q , p < N, ∆mu := div(|∇u| m−2 ∇u) is the m-Laplacian operator, the coefficients a and b are continuous, coercive and positive functions, and the nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include the Ambrosetti–Rabinowitz condition.
dc.languageen
dc.publisherElsevier
dc.rightsrestrictAccess
dc.sourceNonlinear Analysis: Theory, Methods & Applications
dc.subjectEquação de Laplace
dc.subjectAmbrosetti-Rabinowitz condition
dc.subjectCerami condition
dc.subjectNontrivial weak solution
dc.subject(p, q)-Laplacian equations
dc.subjectCondição de Ambrosetti-Rabinowitz
dc.subjectSolução fraca não trivial
dc.titleExistence of a nontrivial solution for the (p, q) Laplacian in RN without the Ambrosetti–Rabinowitz condition
dc.typeArtigo


Este ítem pertenece a la siguiente institución