dc.creator | Chaves, Marcio Fialho | |
dc.creator | Ercole, Grey | |
dc.creator | Miyagaki, Olimpio Hiroshi | |
dc.date | 2020-11-16T21:22:10Z | |
dc.date | 2020-11-16T21:22:10Z | |
dc.date | 2015-02 | |
dc.date.accessioned | 2023-09-28T20:01:24Z | |
dc.date.available | 2023-09-28T20:01:24Z | |
dc.identifier | CHAVES, M. F.; ERCOLE, G.; MIYAGAKI, O. H. Existence of a nontrivial solution for the (p, q) Laplacian in RN without the Ambrosetti–Rabinowitz condition. Nonlinear Analysis: Theory, Methods & Applications, [S.I.], v. 114, p. 133-141, Feb. 2015. DOI: https://doi.org/10.1016/j.na.2014.11.010. | |
dc.identifier | https://doi.org/10.1016/j.na.2014.11.010 | |
dc.identifier | http://repositorio.ufla.br/jspui/handle/1/45525 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9042592 | |
dc.description | In this paper we prove the existence of at least one nonnegative nontrivial weak solution
in D1,p
(R
N
) ∩ D1,q
(R
N
) for the equation
−∆pu − ∆qu + a(x)|u|
p−2
u + b(x)|u|
q−2
u = f(x, u), x ∈ R
N
,
where 1 < q < p < q
⋆
:= Nq
N−q
, p < N, ∆mu := div(|∇u|
m−2 ∇u) is the m-Laplacian
operator, the coefficients a and b are continuous, coercive and positive functions, and the
nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include
the Ambrosetti–Rabinowitz condition. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | restrictAccess | |
dc.source | Nonlinear Analysis: Theory, Methods & Applications | |
dc.subject | Equação de Laplace | |
dc.subject | Ambrosetti-Rabinowitz condition | |
dc.subject | Cerami condition | |
dc.subject | Nontrivial weak solution | |
dc.subject | (p, q)-Laplacian equations | |
dc.subject | Condição de Ambrosetti-Rabinowitz | |
dc.subject | Solução fraca não trivial | |
dc.title | Existence of a nontrivial solution for the (p, q) Laplacian in RN without the Ambrosetti–Rabinowitz condition | |
dc.type | Artigo | |